Anant Babu Marahatta | Fluid Dynamics | Best Researcher Award

Anant Babu Marahatta | Fluid Dynamics | Best Researcher Award

Professor, Kathford International College of Engineering and Management, Institute of Engineering, Tribhuvan University, China

Prof. Dr. Anant Babu Marahatta is a renowned chemist from Nepal. He specializes in computational chemistry, material science, and electrochemistry. With a strong academic background and research experience, he has published numerous papers in prestigious journals. His research focuses on the application of computational methods to understand chemical phenomena.

Profile

scholar

Education 🎓

Ph.D. in Chemistry, Tohoku University, Japan (2012)  M.S. in Chemistry, Tohoku University, Japan (2009)  (link unavailable) in Chemistry, Tribhuvan University, Nepal (2004) (link unavailable) in Science, Tribhuvan University, Nepal (2001)  (link unavailable), National Education Board, Nepal (1996)  S.L.C., National Education Board, Nepal (1996)

Experience 💼

Professor of Chemistry, Kathford International College of Engineering and Management, Tribhuvan University, Nepal (2023-Present)  Senior Lecturer, Kathford International College of Engineering and Management, Tribhuvan University, Nepal (2019-2023) Postdoctoral Research Fellow, Institute for Material Research, Tohoku University, Japan (2012-2016)  G-COE Research Assistant, Graduate School of Science, Tohoku University, Japan (2007-2011)

Awards 🏆

“Nepal Bidhya Vushan Ka”, Government of Nepal “Chitta Bahadur Tuladhar Gold Medal”, Amrit Science College, Tribhuvan University, Nepa  International Graduate Program for Advanced Science (IGPAS-2007) Fellowship, Tohoku University, Japan  Tohoku Development Scholarship, Japan  Japanese Government Monbukagakusho (MEXT) Scholarship, Japan  Kawashima-Shoshi Memorial Scholarship, Japan

Research Focus🔬 

Prof. Dr. Anant Babu Marahatta’s research focuses on computational chemistry, material science, and electrochemistry. He applies computational methods to understand chemical phenomena, including the behavior of molecules, chemical reactions, and material properties. His research aims to contribute to the development of new materials, energy storage devices, and sustainable technologies.

Publications 📚

1. A DFT Analysis for the Electronic Structure, Mulliken Charges Distribution and Frontier Molecular Orbitals of Monolayer Graphene Sheet ⚡️💻
2. Effect of n-Type Dopant Nitrogen in the Structure and Atomic Charges Distribution of Monolayer Graphene Sheet: A DFT Analysis ⚡️💻
3. DFT Study of Electronic Structures on Hydrated Sulfate Clusters [SO4 2- (H2O)n], n = 0−4,16 ⚗️💡
4. Towards Understanding the Stabilities of Hydrated Vanadium (V) Complex Ions and the Pathway of V2O5 Precipitation in Catholyte Solution of Vanadium Redox Flow Battery 🔋💡
5. Computational Study on Electronic Structure, Atomic Charges Distribution, and Frontier Molecular Orbitals of Butadiene: General Features for Diels-Alder Reaction 🧬💻
6. DFT Study on Ground State Electronic Structures of Simple to Complex Molecular Specimens ⚗️💡
7. Theoretical Study on Microhydration of Bisulfate Ions [HSO4 − (H2O)n] n = 0−3,5 ⚗️💡
8. DFT Study on Electronic Charge Distribution and Quantum−Chemical Descriptors for the Kinetic Stability of Vanadium Aquo Complex Ions [V(H2O)6] 2+ and [V(H2O)6] 3+ ⚗️💡
9. Coordination Chemistry of Vanadium Aquo Complex Ions in Oxidation States +II, +III, +IV, and +V: A Hybrid-Functional DFT ⚗️💡
10. Quantum−Mechanical Investigation of Chemical Energetics and Electronic Stabilities of Microhydrated Protons [H+ (H2O)n] ⚗️💡
11. Insights into the Chemical Bonding in Microhydrated Protons from Molecular Orbital and Population Analysis Methods

Conclusion

Prof. Dr. Anant Babu Marahatta is an accomplished researcher with a strong track record of publications, awards, and academic experience. His research expertise in computational chemistry, material science, and electrochemistry makes him an ideal candidate for the Best Researcher Award. While there are areas for improvement, his strengths and achievements make him a deserving nominee for this prestigious award.

Sergios Villette | Mechanical Engineering | Best Researcher Award

Mr. Sergios Villette | Mechanical Engineering | Best Researcher Award

MEng, PhD Candidate Researcher, LTT/NTUA, Greece

Alexandros Alexiou is a mechanical engineer and researcher specializing in sustainable aviation fuel technologies and aeroengine combustion modeling. He is currently pursuing a Ph.D. in Mechanical Engineering at the National Technical University of Athens (NTUA), focusing on the experimental evaluation and modeling of alternative fuels in aircraft engines. His research involves aeroengine combustion chamber modeling, uncertainty quantification in aerodynamics, and innovative propulsion systems. Alexandros has collaborated on major projects with industry leaders such as SAFRAN Group and HELPE Group. With expertise in CFD simulations, mechanical design, and programming, he has contributed to the advancement of bio-kerosene utilization and non-conventional combustion. He has published in peer-reviewed journals, including Aerospace, where his work was featured on the journal cover. In addition to his research, he has experience as a tutor, robotics teacher, and machinist, demonstrating his diverse technical and academic expertise.

Profile.

orcid

Education

Alexandros Alexiou is currently pursuing a Ph.D. in Mechanical Engineering at the National Technical University of Athens (NTUA), focusing on sustainable aviation fuel technologies in aircraft propulsion systems. His doctoral research is funded by NTUA’s Special Account for Research Grants Scholarship. He holds a Master’s & Bachelor’s Degree in Mechanical Engineering from NTUA, specializing in Air and Ground Transfer Vehicles, with a GPA of 7.8/10. During his undergraduate studies, he conducted a diploma thesis on aerodynamic uncertainty quantification at the Parallel CFD & Optimization Unit (PCOpt) of LTT/NTUA, utilizing OpenFOAM and in-house codes. He completed his high school education at the 2nd General Lyceum of Corfu, achieving a GPA of 19.3/20. His strong academic foundation in aerodynamics, propulsion, and computational simulations has prepared him for cutting-edge research in aviation fuels, energy efficiency, and combustion modeling.

Experience 

Alexandros Alexiou is a Research Associate at the Laboratory of Thermal Turbomachines (LTT), NTUA, specializing in aeroengine combustion modeling and alternative fuel technologies. His research includes developing PROOSIS models for water evaporation and hydrogen combustion in collaboration with SAFRAN Group. He has also worked on the Lipid4fuel project, investigating bio-kerosene use in aircraft engines. Beyond research, Alexandros has diverse professional experience. He worked as a freelance tutor for engineering courses, a STEM/robotics teacher for primary school students, and a restaurant waiter during summer seasons. His technical background includes hands-on experience as a welder-machinist at Machine Shop L. Zorbas, gaining practical skills in mechanical fabrication. His expertise in CFD simulations, mechanical design, and programming allows him to contribute effectively to the advancement of sustainable aviation fuels and innovative propulsion systems. His interdisciplinary approach bridges engineering theory and practical applications in aviation and energy research.

Awards & Honors 

Alexandros Alexiou has received multiple prestigious awards in science and engineering competitions. In 2015, he was honored by the Association of Greek Chemists for his outstanding performance in the 29th National Chemistry Competition, securing an 85/100 score. In 2015, he placed 20th in the “Aristotle” National Physics Competition, earning recognition from the Association of Greek Physicists. He also received an award from the Hellenic Mathematical Society for his success in the “Thalis” National Mathematical Competition in 2014, showcasing his analytical and problem-solving skills. In addition to academic awards, he holds a DALF C2 certification in French from the Ministère de l’Éducation Nationale de la République Française and a Certificate of Proficiency in English (CPE) from the University of Cambridge, demonstrating bilingual proficiency. His achievements reflect a strong foundation in STEM disciplines, positioning him as a rising expert in mechanical engineering and aviation research.

Research Focus 

Alexandros Alexiou’s research focuses on sustainable aviation fuel technologies, aeroengine combustion modeling, and uncertainty quantification in aerodynamics. His Ph.D. work at NTUA involves experimental evaluation and modeling of biofuels and hydrogen-based propulsion systems, aiming to develop eco-friendly alternatives to conventional jet fuels. He specializes in computational fluid dynamics (CFD), chemical reactor networks, and non-intrusive uncertainty quantification for optimizing aircraft engine performance and emissions reduction. His expertise extends to hydrogen combustion modeling, bio-kerosene integration, and advanced propulsion systems. Alexandros has actively contributed to industry-driven projects, including SAFRAN’s PROOSIS modeling for hydrogen combustion and the Lipid4fuel project, a collaborative effort to assess bio-kerosene applications in aviation. His research integrates simulation tools such as OpenFOAM, ANSYS, and Cantera with experimental testing and industrial collaboration, driving innovation in green aviation technologies. His work aims to shape the future of sustainable air transportation and next-generation propulsion systems.

Publications

 

📖 Villette S, Adam D, Alexiou A, Aretakis N, Mathioudakis K. A Simplified Chemical Reactor Network Approach for Aeroengine Combustion Chamber Modeling and Preliminary Design. Aerospace. 2024; 11(1):22. 🔗 DOI (🌟 Journal Cover Feature)

📜 Diploma Thesis: Non-intrusive Polynomial Chaos Expansion for Aerodynamic Uncertainty Quantification & Robust Design with Manufacturing Uncertainties. Advisor: K. C. Giannakoglou, NTUA (2022).

Conclusion

The candidate demonstrates exceptional research potential in mechanical engineering and sustainable aviation fuels, making them a strong contender for the Best Researcher Award. Their work in combustion chamber modeling, bio-kerosene usage, and computational mechanics aligns with cutting-edge research trends.

Xueye Chen | Hydrodynamics | Best Researcher Award

Prof. Xueye Chen | Hydrodynamics | Best Researcher Award

Professor at  Ludong University, China

👨‍🏫 Prof. Xueye Chen is a faculty member at the College of Transportation, Ludong University. He has served as a visiting scholar at Nanyang Technological University and The Hong Kong Polytechnic University. His expertise spans wearable technology, medical health innovations, and modern agriculture. Prof. Chen specializes in micro-nano manufacturing, flexible MEMS intelligent sensing, and microfluidic systems. With over 200 publications and 10 patents, he significantly contributes to advancing intelligent sensors and fractal microfluidic control.

Professional Profiles:

Education🎓

Prof. Chen pursued higher education in micro-nano technology and mechanical engineering, solidifying his foundation in innovative sensor development. He has engaged in specialized training and international academic exchanges at prestigious institutions such as Nanyang Technological University and The Hong Kong Polytechnic University.

Experience🔬 

Prof. Chen has led numerous research projects in wearable devices and flexible sensors. He has completed two major projects, with one ongoing. His extensive publication record, alongside 10 patents, showcases his dedication to applied research in micro-nano manufacturing.

Awards and Honors🏆

Prof. Chen holds an H-index of 33 with over 3,500 citations. His patents and groundbreaking work in fluid control and sensing technologies have positioned him as a leading figure in his field. His contributions have earned him recognition for innovation and scholarly excellence.

Research Focus🧪 

Prof. Chen’s research emphasizes microfluidic system design, where he applies fractal principles to develop efficient micromixers. He pioneers new micro-nano manufacturing methods and designs flexible MEMS sensors for wearable health and agricultural applications, driving advancements in intelligent sensing.

✍️Publications Top Note 

Dual-mode paper fiber sensor – Monitors humidity and pressure using laser-induced graphene. (Chemical Engineering Journal, 2024)

Coastal fractal micromixer – Designs micromixers for liposome manufacturing. (Physics of Fluids, 2024)

Droplet formation simulation – Investigates microchannel capillary devices. (Chinese Journal of Analytical Chemistry, 2024)

Porous fiber humidity sensor – Tracks skin and breathing moisture non-invasively. (Journal of Materials Chemistry A, 2024)

Three-objective micromixer optimization – Applies Pareto genetic algorithms to fractal micromixers. (Int. J. Chem. Reactor Eng., 2024)

Conclusion

Prof. Xueye Chen is a highly accomplished researcher whose impressive publication record, high citation impact, and innovative patents make him a strong contender for the Best Researcher Award. His groundbreaking work in micro-nano manufacturing and fluidic systems reflects a commitment to pushing the boundaries of scientific discovery. Addressing gaps in collaboration, professional memberships, and editorial appointments would further solidify his profile and increase his competitiveness for top-tier awards.

Dr. Saira Naz | Fluid Mechanics and Nanotechnology | Best Researcher Award

Dr. Saira Naz | Fluid Mechanics and Nanotechnology | Best Researcher Award

Dr. Saira Naz, Giresun Üniversity, Turkey

I am an experienced academic professional with a PhD in Mathematics from Quaid-i-Azam University, Islamabad. My academic journey also includes an M.Phil. in Applied Mathematics, an M.Sc. in Mathematics, and a B.Sc. from the same institution. I hold a B.Ed from Allama Iqbal Open University. I have served as a faculty member at Air University and a visiting faculty at Bahria University, with additional teaching experience at Islamabad College of Management & Commerce and Spring Field Public School. I have attended multiple international conferences on fluid mechanics, reflecting my active engagement in continuous professional development.

Professional Profiles:

Scopus

Professional Qualification 📜

B.Ed: Allama Iqbal Open University, Islamabad (2015).

Experience 💼

Serving as a Faculty in Air University, IslamabadServing as a Visiting Faculty in Bahria UniversityServed as a permanent faculty (Teaching experience at F.Sc and B.Sc level) in Islamabad College of Management & Commerce, RawalpindiWorked as a lecturer in the Spring Field Public School and College, Harley-2 Campus, Harley Street, Rawalpindi

Conferences Attended 📚

Attended 7th International Conference on “Recent Developments in Fluid Mechanics” February 13-15, 2018.Attended 9th International Conference on “Recent Developments in Fluid Mechanics” November 27-29, 2023.Attended Conference on “Emerging Issues”

Career Objective 🌟

To work with an organization that enhances my abilities and where I can use my academic and technical experience to grow with the organization.

✍️Publications Top Note :

1. Significance of Nonlinear Radiation in Entropy Generated Flow of Ternary-Hybrid Nanofluids with Variable Thermal Conductivity and Viscous Dissipation

Authors: Naz, S., Hayat, T., Adil Sadiq, M., Momani, S.
Journal: Ain Shams Engineering Journal, 2024, 15(7), 102792
Citations: 1
Abstract: Not available
Related Documents: Not available

This article explores the impact of nonlinear radiation on the entropy generated in flows of ternary-hybrid nanofluids, considering the effects of variable thermal conductivity and viscous dissipation. The study is crucial for enhancing the efficiency of thermal systems involving nanofluids.

2. Melting and Dissipative Effects About Entropy Induced Darcy-Forchheimer Flow Involving Ternary-Hybrid Nanofluids

Authors: Hayat, T., Naz, S., Alsaedi, A., Momani, S.
Journal: Case Studies in Thermal Engineering, 2024, 55, 104097
Citations: 3
Abstract: Not available
Related Documents: Not available

This research investigates the melting and dissipative effects in entropy-induced Darcy-Forchheimer flow with ternary-hybrid nanofluids. The findings provide insights into optimizing heat transfer processes in engineering applications.

3. Entropy Optimized Radiative Flow Conveying Hybrid Nanomaterials (MgO-MoS2/C2H6O2) with Melting Heat Characteristics and Cattaneo-Christov Theory: OHAM Analysis

Authors: Naz, S., Hayat, T., Ahmad, B., Momani, S.
Journal: Ain Shams Engineering Journal, 2024, 102892
Citations: 0
Abstract: Not available
Related Documents: Not available

This article discusses the entropy optimization in radiative flow of hybrid nanomaterials, incorporating MgO-MoS2/C2H6O2, considering melting heat characteristics and applying the Cattaneo-Christov theory. The analysis is performed using the Optimal Homotopy Asymptotic Method (OHAM).

4. Soret and Dufour Impacts in Entropy Optimized MHD Flow by Third-Grade Liquid Involving Variable Thermal Characteristics

Authors: Hayat, T., Naz, S., Momani, S.
Journal: Numerical Heat Transfer; Part A: Applications, 2024
Citations: 0
Abstract: Not available
Related Documents: Not available

This study focuses on the Soret and Dufour effects in magnetohydrodynamic (MHD) flow of a third-grade liquid, optimized for entropy, considering variable thermal characteristics. The results have implications for advanced fluid dynamics and thermal management systems.

5. Numerical Modeling and Analysis of Non-Newtonian Nanofluid Featuring Activation Energy

Authors: Naz, S., Gulzar, M.M., Waqas, M., Hayat, T., Alsaedi, A.
Journal: Applied Nanoscience (Switzerland), 2020, 10(8), pp. 3183–3192
Citations: 6
Abstract: Not available
Related Documents: Not available

This paper presents a numerical analysis of non-Newtonian nanofluids with activation energy. The study offers valuable data for designing and improving heat transfer systems utilizing nanofluids.

6. Hydromagnetic Carreau Nanoliquid in Frames of Dissipation and Activation Energy

Authors: Waqas, M., Naz, S., Hayat, T., Ijaz Khan, M., Alsaedi, A.
Journal: Communications in Theoretical Physics, 2019, 71(12), pp. 1416–1424
Citations: 12
Abstract: Not available
Related Documents: Not available

This article examines the behavior of hydromagnetic Carreau nanoliquids, incorporating dissipation and activation energy effects. The findings contribute to the field of fluid mechanics and thermal conductivity enhancement.

7. Numerical Simulation for Activation Energy Impact in Darcy–Forchheimer Nanofluid Flow by Impermeable Cylinder with Thermal Radiation

Authors: Waqas, M., Naz, S., Hayat, T., Alsaedi, A.
Journal: Applied Nanoscience (Switzerland), 2019, 9(5), pp. 1173–1182
Citations: 20
Abstract: Not available
Related Documents: Not available

This study uses numerical simulation to analyze the impact of activation energy on Darcy-Forchheimer nanofluid flow around an impermeable cylinder, considering thermal radiation. The research offers insights into the heat transfer characteristics of nanofluids in complex geometries.

8. Effectiveness of Improved Fourier-Fick Laws in a Stratified Non-Newtonian Fluid with Variable Fluid Characteristics

Authors: Waqas, M., Naz, S., Hayat, T., Shehzad, S.A., Alsaedi, A.
Journal: International Journal of Numerical Methods for Heat and Fluid Flow, 2019, 29(6), pp. 2128–2145
Citations: 14
Abstract: Not available
Related Documents: Not available

This paper assesses the effectiveness of improved Fourier-Fick laws in a stratified non-Newtonian fluid with variable characteristics. The research contributes to the understanding of heat and mass transfer in complex fluid systems.

9. Effectiveness of Darcy-Forchheimer and Nonlinear Mixed Convection Aspects in Stratified Maxwell Nanomaterial Flow Induced by Convectively Heated Surface

Authors: Hayat, T., Naz, S., Waqas, M., Alsaedi, A.
Journal: Applied Mathematics and Mechanics (English Edition), 2018, 39(10), pp. 1373–1384
Citations: 24
Abstract: Not available
Related Documents: Not available