Danish Khan | Energy | Best Scholar Award

Dr. Danish Khan | Energy | Best Scholar Award

Assistant Professor at Shenzhen Technology University, China

🎓 A dedicated scientist and educator with expertise in renewable energy and electrical engineering, specializing in perovskite solar cells. 🌱 Holds diverse academic and professional experience in Pakistan and China, demonstrating a passion for innovative research and teaching. 💡 A dedicated scientist and educator with expertise in renewable energy and electrical engineering, specializing in perovskite solar cells. 🌱 Holds diverse academic and professional experience in Pakistan and China, demonstrating a passion for innovative research and teaching. 💡

Publication Profile

scholar

Education🎓 

PhD in Renewable Energy (2014.09-2019.06): Research focus on perovskite organic photovoltaics at North China Electric Power University. Master’s in Electrical Engineering (2012.09-2014.06): Specialization in insulation materials at North China Electric Power University Undergraduate in Electrical Engineering (2007.09-2011.06): Focused on insulating materials at COMSATS University, Pakistan.

Experience👩‍🏫

Scientist in Materials Perovskite R&D (2023.03-Present): Researching perovskite solar cells. Postdoctoral Researcher (2021.03-2023.02): Worked on doped HTMs and titanium ore solar cells at Southern University of Science and Technology. Assistant Professor (2019.09-2021.02): Taught electrical engineering and materials courses at Indus University, Pakistan, and served as part-time acting director.

Awards and Honors🔍

HEC Pakistan Certified Doctoral Supervisor.  Guest speaker at MEIE2020 and the 4th Symposium on Optoelectronics Materials and Devices.  Reviewer for SCI journals.

Research Focus🌞

Specializes in perovskite solar cells, focusing on stability, efficiency, and advanced doped HTMs.  Expertise in materials characterization using NMR, XRD, SEM, TEM, and computational tools like Materials Studio and MATLAB.

Publications 📖

📘 Competitive assessment of South Asia’s wind power industry: SWOT analysis and value chain combined model – Energy Strategy Reviews, 2020. Cited: 82.

🌞 Dopant-free phthalocyanine hole conductor for stable perovskite solar cells with 23% efficiency – Advanced Functional Materials, 2022. Cited: 67.

📊 Photovoltaic power forecasting using Elman Neural Network – IEEE Conference, 2017. Cited: 43.

🧪 Nexuses Between Chemical Design and Small Molecule Hole Transport Materials – Small, 2023. Cited: 41.

🔬 Dielectric properties of transformer oil-based silica nanofluids – IEEE, 2015. Cited: 40.

⚛️ Thiophene-functionalized phthalocyanine isomers for defect passivation in perovskite solar cells – Journal of Energy Chemistry, 2022. Cited: 36.

🏭 Incorporation of carbon nanotubes in organic solar cells – Ain Shams Engineering Journal, 2021. Cited: 36.

🔋 Design and performance analysis of PV grid-tied systems with energy storage – Int. J. Electrical and Computer Engineering, 2021. Cited: 32.

🌟 Improving optical properties of SnO₂ nanoparticles via Ni doping – Current Research in Green and Sustainable Chemistry, 2021. Cited: 30.

🌌 Conjugated linker-boosted self-assembled monolayers for perovskite solar cells – Joule, 2024. Cited: 29.

🌐 Hybrid power forecasting with neural networks and air quality index – Int. J. Photoenergy, 2017. Cited: 26.

🧾 Phthalocyanine in perovskite solar cells: A review – Materials Chemistry Frontiers, 2023. Cited: 22.

🏗️ Ion-Dipole interaction for inverted perovskite solar cells – Advanced Functional Materials, 2024. Cited: 20.

🌞 Charge transport-free np homojunction perovskite solar cells – Solar Energy, 2022. Cited: 20.

Conclusion

This individual is highly suitable for the Research for Best Scholar Award due to their exceptional academic credentials, impactful research contributions in renewable energy, and proven leadership skills in both academia and research. Their ability to bridge theoretical knowledge with practical applications in perovskite solar cells aligns with the award’s focus on scholarly excellence.

To further strengthen their candidacy, they could diversify their research focus, pursue interdisciplinary collaborations, and secure significant grants. With continued professional growth, this individual is well-positioned to make transformative contributions to academia and renewable energy innovation.

Md Mahfuzur Rahman | Cellulose | Best Researcher Award

Dr.  Bangladesh University of Textiles, Bangladesh

I am currently pursuing a B.Sc. degree in Textile Engineering with a specialization in Industrial and Production Engineering at the Bangladesh University of Textiles (BUTEX) in Bangladesh. Since 2018, I have been working as a research assistant at both BUTEX and North South University (NSU). My research interests include Nanomaterials & Nanomechanics, Semiconductor Electrophysics, Magnetic Materials, Wearable Smart Textiles, Biomedical applications, Thin Film Magnetism, First-principle DFT studies, and Engineered 2D Quantum Materials. I have previously conducted research on ferrite nanomaterials, synthesizing and characterizing their properties, as well as sustainable textiles. I have recently been working on smart textiles and experimental and DFT analysis of perovskite materials. Moreover, I actively participated in various clubs, including BUTEX Sports Club and BUTEX Youth Development Club, which honed my leadership and event management skills. From an early age, mathematics has been my favorite subject, and I have actively participated in the Bangladesh Mathematical Olympiad, achieving two awards. Additionally, in 2016, I secured the 12th position in the Bangladesh Physics Olympiad. I also participated at Asian Pacific Mathematical Olympiad. My penchant for creative endeavors inspired my research journey, which began in my first year of undergraduate studies.

Professional Profiles:

🎯 Career Objective

I aim to be a valuable professional contributing to institutions and society through creative and impactful research. Seeking a research-oriented position to leverage my knowledge and skills, I thrive in challenging environments that foster continuous learning. My passion lies in Material Science related research.

🎓 Education

Bangladesh University of Textiles, Dhaka, BangladeshB.Sc. in Textile Engineering (Specialization in Industrial & Production Engineering) (2018-2023)CGPA: 3.16/4Rajshahi Govt. City College, Rajshahi, BangladeshHigher Secondary Certificate (2017)GPA: 5/5Agrani School and College, Rajshahi, BangladeshSecondary School Certificate (2015)GPA: 5/5

💻 Technical Qualifications

Computer Skills

C, Python, MS Office, OriginLab Software, FullProf Software, Imagej, CAD, CATIA, CASTEP, SolidWorks

Experimental Techniques

X-ray Diffraction (XRD), FTIR, FESEM, Transmission Electron Microscopy, UV-Visible Spectroscopy, Vibrating Sample Magnetometer, Universal Testing Machine, TGA, DTA

Theoretical Techniques

Rietveld Analysis, DFT Investigation, Stress and Displacement Analysis

🔬 Research Interests

Wearable Smart TextilesBiomedicalNanomaterials & NanomechanicsSemiconductor Electro-physicsAdditive ManufacturingThin Film MagnetismFirst-Principle DFT StudyPhotovoltaics

Strengths for the Award:

  • Research Contributions: The researcher should have a strong portfolio of impactful publications, such as high-quality journal articles, conference papers, or patents, that have significantly contributed to their field.
  • Innovation: The researcher’s work should demonstrate a high level of innovation, leading to new discoveries or advancements in technology, methodology, or understanding in their area of expertise.
  • Collaboration and Leadership: The researcher should have a track record of leading or collaborating on interdisciplinary projects, demonstrating their ability to work with a diverse range of experts.
  • Recognition and Awards: Previous recognition through awards, grants, or invitations to speak at conferences can highlight the researcher’s influence and reputation in their field.
  • Impact on Society: The research should have a tangible impact on society, such as applications in industry, policy changes, or contributions to solving real-world problems.

Areas for Improvement:

  • Broader Impact: While the researcher may have made significant contributions to a specific field, they may need to expand the reach of their work to have a broader impact across multiple disciplines.
  • Communication and Outreach: The ability to communicate research findings to a non-specialist audience, including the general public, policymakers, or industry stakeholders, is increasingly important. Improvement in this area could enhance the visibility and impact of their work.
  • Diversity and Inclusion: The researcher could focus more on mentoring underrepresented groups in their field or engaging in initiatives that promote diversity and inclusion in science and research.
  • Sustainability and Ethics: Depending on the research field, the researcher may need to incorporate more sustainable practices or address ethical considerations in their work.

✍️Publications Top Note :

Cellulose Fiber from Jute and Banana Fiber:

Publication: “Physical properties of isolated cellulose fiber from jute and banana fiber through kraft pulping: Potential applications in packaging and regenerated fibers.”

Journal: SPE Polymers (2024).

Focus: Investigation of the physical properties of cellulose fibers derived from jute and banana through kraft pulping. The study explores potential applications in packaging and the development of regenerated fibers.

Electromagnetic Properties of Al3+ Substituted Ni–Co Ferrites:

Publication: “Rietveld refined structural and sintering temperature dependent electromagnetic properties of Al3+ substituted Ni–Co ferrites prepared through sol–gel auto combustion method for high-frequency and microwave devices.”

Journal: Journal of Materials Science: Materials in Electronics (2024).

Focus: This research delves into the electromagnetic properties of Al3+ substituted Ni-Co ferrites, emphasizing their application in high-frequency and microwave devices.

Triboelectric Nanogenerators:

Publication: “Carbon-based Textile structured Triboelectric Nanogenerators for Smart Wearables.”

Status: Preprint (2024).

Focus: Development of carbon-based textile triboelectric nanogenerators aimed at powering smart wearable devices.

Magnetic and Optoelectronic Properties of Ni-Cu Spinel Ferrites:

Publication: “Magnetic, optoelectronic, and rietveld refined structural properties of Al3+ substituted nanocrystalline Ni-Cu spinel ferrites: An experimental and DFT based study.”

Journal: Journal of Magnetism and Magnetic Materials (2023).

Focus: Study of the magnetic, optoelectronic, and structural properties of Ni-Cu spinel ferrites, including experimental and theoretical (DFT) approaches.

Dielectric and Electrical Transport in Ni-Cu Spinel Ferrites:

Publication: “Structural, dielectric, and electrical transport properties of Al3+ substituted nanocrystalline Ni-Cu spinel ferrites prepared through the sol–gel route.”

Journal: Results in Physics (2022).

Focus: Analysis of dielectric and electrical transport properties in Al3+ substituted Ni-Cu spinel ferrites synthesized using the sol-gel method.

Structural and Magnetic Properties of Ni-Zn Ferrites:

Publication: “Structural, magnetic, and electrical properties of Ni0.38−xCu0.15+yZn0.47+x−yFe2O4 synthesized by sol–gel auto-combustion technique.”

Journal: Journal of Materials Science: Materials in Electronics (2021).

Conclusion:

  • Suitability for the Award: Based on the evaluation of strengths and areas for improvement, the researcher appears highly suitable for the “Best Researcher Award.” Their significant contributions to their field, coupled with a track record of innovation and leadership, make them a strong candidate.
  • Final Recommendation: While the researcher is highly qualified, they could further enhance their candidacy by expanding the impact of their work, engaging more with the broader community, and contributing to initiatives that promote diversity and sustainability in research.