ERHAN BAYSAL | Mechanical Engineering | Best Researcher Award

Mr. ERHAN BAYSAL |  Mechanical Engineering | Best Researcher Award

Lecturer at Laser Research Centre, Zonguldak Bülent Ecevit Üniversitesi, China

Erhan Baysal is a Lecturer at Bülent Ecevit University, specializing in Mechanical Engineering. With a strong background in materials science and manufacturing processes, particularly in friction welding, he has contributed to numerous academic publications. His academic journey spans various prestigious institutions, and he actively participates in research and academic projects related to material behavior, mechanical design, and welding technologies. 📚🔧👨‍🏫

Profile

scholar

Education 🎓

Master’s in Mechanical Engineering, Bülent Ecevit University, 2019 🎓Bachelor’s in Mechanical Engineering, Fırat University, 2013

Experience 🏫💻

Lecturer, Bülent Ecevit University, 2016–present 🎓Researcher in national projects on manufacturing processes 🛠️Instructor in various courses including Strength of Materials and Manufacturing Processes

Awards and Honors 🏆

Contributor to several peer-reviewed articles in international journalsPublished in prestigious conferences and journals on materials and welding technologies 📑Awarded for his contribution to applied research in friction welding and mechanical design 🌍

Research Focus🔬🔩

Erhan Baysal’s research focuses on materials science, particularly the mechanical behavior and welding of aluminum alloys using friction stir welding. He also explores deformation processes in material shaping and manufacturing optimization.

Publication  Top Notes

An Overview of Deformation Path Shapes on Equal Channel Angular Pressing” (2022)

Authors: E. Baysal, O. Koçar, E. Kocaman, U. Köklü

Journal: Metals 12 (11), 1800

Summary: This paper discusses the deformation paths formed during equal channel angular pressing (ECAP). The study focuses on how different processing parameters, such as the angle of the channels, affect the microstructure and mechanical properties of the material.

“Mechanical Behavior of a Friction Welded AA6013/AA7075 Beam” (2022)

Authors: O. Koçar, M. Yetmez, E. Baysal, H.A. Ozyigit

Journal: Materials Testing 64 (2), 284-293

Summary: This research investigates the mechanical properties of beams made from AA6013 and AA7075 aluminum alloys joined via friction welding. The study examines the mechanical behavior of the weld joint, focusing on parameters such as strength, hardness, and fracture toughness.

“A New Approach in Part Design for Friction Stir Welding of 3D-Printed Parts with Different Infill Ratios and Colors” (2024)

Authors: O. Koçar, N. Anaç, E. Baysal

Journal: Polymers 16 (13), 1790

Summary: This paper introduces a novel approach to part design for friction stir welding (FSW) of 3D-printed parts. The study evaluates how different infill ratios and colors in 3D printing affect the welding process, quality, and mechanical properties of the final product.

“Eşit Kanallı Açısal Presleme Yönteminde Kanal Açılarının ve İç Köşe Kavisinin Deformasyona Etkisinin Sonlu Elemanlar Metodu ile İncelenmesi” (2023)

Authors: E. Baysal, O. Koçar, N. Anaç, F. Darıcı

Journal: Çukurova Üniversitesi Mühendislik Fakültesi Dergisi 38 (3), 859-873

Summary: This paper investigates the effect of channel angles and inner corner radii on deformation during equal channel angular pressing (ECAP) using finite element method (FEM) simulations. The research provides insights into how these factors influence material flow and structural integrity.

“Görüntü İşleme Teknikleri ile Rulo Sac Hassas Doğrultmada Silindir Konumlarının Belirlenmesi” (2021)

Authors: O. Koçar, S. Dikici, H. Uçar, E. Baysal

Journal: El-Cezeri 8 (2), 604-617

Summary: This article explores the use of image processing techniques to determine the cylinder positions in precision flattening of rolled sheets. The study demonstrates how computer vision can enhance manufacturing processes, particularly in achieving high precision in material deformation.

“3B Yazıcıda Üretilen Plakaların Sürtünme Karıştırma Kaynak Parametrelerinin YSA ile Tahmini” (2024)

Authors: N. Anaç, O. Koçar, E. Baysal

Journal: Niğde Ömer Halisdemir Üniversitesi Mühendislik Bilimleri Dergisi 13 (1), 176-187

Summary: This paper presents a prediction model using artificial neural networks (ANN) to estimate the parameters for friction stir welding of 3D-printed plates. The research focuses on optimizing welding conditions to improve the quality and strength of the welded joints.

“Etial 180 Alaşımına İlave Edilen Bakırın Mikroyapı, Sertlik ve Korozyon Üzerindeki Etkisi” (2023)

Authors: E. Kocaman, E. Baysal, O. Koçar, A.S. Güldibi, S. Şirin

Journal: Niğde Ömer Halisdemir Üniversitesi Mühendislik Bilimleri Dergisi 12 (2), 604-611

Summary: This study investigates the impact of adding copper to Etial 180 alloy, focusing on its effect on microstructure, hardness, and corrosion resistance. The findings highlight the potential improvements in material properties when copper is incorporated into the alloy.

“Barkhausen Noise as A Magnetic Nondestructive Testing Technique”

Authors: Ö. Adanur, O. Koçar, A.S. Güldibi, E. Kocaman, E. Baysal

Journal: Black Sea Journal of Engineering and Science 7 (4), 7-8

Summary: The paper explores the use of Barkhausen noise as a nondestructive testing (NDT) technique to assess the magnetic properties of materials. This method is useful in evaluating the integrity and structural health of components without causing damage.

“AA6013/AA7075 Alüminyum Malzemelerin Sürtünme Kaynağı Yöntemiyle Birleştirilmesi ve Analizi”

Authors: E. Baysal, O. Koçar, M. Yetmez, H.A. Ozyigit

Summary: This research focuses on the friction stir welding (FSW) of AA6013 and AA7075 aluminum alloys, analyzing the mechanical properties, microstructure, and joint quality achieved by this welding method.

Conclusion

Erhan Baysal has shown exceptional dedication to advancing mechanical engineering through his research and teaching. His focus on cutting-edge manufacturing technologies, coupled with his broad publication history, makes him a strong candidate for the Best Researcher Award. With further interdisciplinary integration and industry collaborations, he could significantly elevate the practical applications of his research, solidifying his role as a leading figure in the field. His ongoing work promises to continue shaping the future of mechanical engineering.

Weifeng Sun | Structural Health Monitoring | Best Researcher Award

Mr. Weifeng Sun | Structural Health Monitoring | Best Researcher Award

Lecturer Chang’an University, China

Weifeng Sun 👨‍🔬, a doctor of engineering, hails from Yanling County, Henan Province. He is a lecturer and master’s supervisor at Chang’an University’s College of Geology and Engineering 🏫. As a member of the Chinese Society for Rock Mechanics and Engineering 🧗‍♂️ and the Communist Party of China 🇨🇳, he has published nearly 20 academic papers 📚 and holds over 40 patents and software copyrights 💻. His work is focused on geological engineering, both in teaching and research

Publication Profile

Orcid

Education 🎓

Weifeng Sun completed his Doctorate in Engineering 🎓 with a focus on geotechnical materials and geological engineering 📊. His educational journey involved rigorous research 🧠 into the deformation and failure mechanisms of geotechnical materials, stability of soil slopes 🌱, and intelligent monitoring technologies 🖥️. His academic foundation provides a strong framework for his innovative research into geotechnical engineering 🔨, making significant contributions to both academia and practical applications in the field 🏗️.

Experience 👨‍🏫

Dr. Weifeng Sun’s professional journey spans across teaching 📘 and research 🔬 at the College of Geology and Engineering, Chang’an University 🏛️. As a lecturer and master’s supervisor 👨‍🏫, he mentors aspiring geologists and engineers while advancing his research in geotechnical engineering 🏞️. With 20+ publications and over 40 patents and software copyrights 📝, he is actively involved in cutting-edge research on geological materials and monitoring systems. His expertise extends to in-situ testing 🧪 and geotechnical project management 🚧.

Awards and Honors 🏆

Dr. Weifeng Sun’s pioneering work in geotechnical engineering has earned him numerous accolades , including recognition for his patents and contributions to the field 📜. As a member of prestigious organizations like the Chinese Society for Rock Mechanics and Engineering 🏅, his innovative research has been acknowledged both nationally and internationally 🌍. His patents 💡 and research papers 📖 reflect his commitment to advancing geotechnical engineering 🏗️, establishing him as a respected figure in the academic and professional communities 🎖️.

Research Focus 🔍.

Weifeng Sun’s research interests lie in the deformation and failure mechanisms of geotechnical materials 🧱, plant-based control on shallow soil slopes stability 🌳, intelligent monitoring for geotechnical structures 🖥️, and in-situ testing of geotechnical materials 🧪. His work aims to improve the safety and efficiency of geotechnical engineering projects 🌐 by leveraging advanced monitoring techniques and developing sustainable engineering solutions 🌱. His multidisciplinary approach addresses both macroscopic and microscopic geotechnical challenges 🔍.

Publications Top Notes

“A Statistical Damage Model for the Soil–Structure Interface Considering Interface Roughness and Soil Shear Area”
Construction and Building Materials, 2024-06
DOI: 10.1016/j.conbuildmat.2024.136606

“Effect of Dry-Wet Cycles and Freeze-Thaw Cycles on the Antierosion Ability of Fiber-Reinforced Loess”
Advances in Materials Science and Engineering, 2021-01
DOI: 10.1155/2021/8834598

“Deformation of Geogrid-Reinforced Segmental Retaining Wall Due to Insufficient Compaction of the Loess Backfill: Case Study in Shaanxi Province, China”
Journal of Performance of Constructed Facilities, 2019-09-18
DOI: 10.1061/(ASCE)CF.1943-5509.0001346

“Failure Models of a Loess Stacked Dam: A Case Study in the Ansai Area (China)”
Bulletin of Engineering Geology and the Environment, 2019-09-06
DOI: 10.1007/s10064-019-01605-z

“A Dry Soil Crushing and Screening Device in Geotechnical Test”
Patent ZL201821116361.2 (2019-01-18)

“A Soil Sensor Installation Device”
Patent ZL201821109384.0 (2019-01-04)

“A Rebar Meter Used to Monitor Force of Anchor Embed in Rock and Soil”
Patent ZL201721579552.8 (2018-08-10)

“A Comprehensive Geotechnical Test Platform for Geological Model Tests of Complex Slopes”
Patent ZL201710480631.1 (2017-08-29)

 

Conclusion

Dr. Weifeng Sun is a highly qualified candidate for the Best Researcher Award due to his substantial contributions to geological engineering, including a robust portfolio of publications and patents. His research addresses critical issues in the field, and his role as an educator further underscores his impact. With improvements in global collaboration and broader dissemination of his work, Dr. Sun could further elevate his stature in the international research community. Overall, his innovative approaches and commitment to advancing geological engineering make him a strong contender for the award.

Tzu-Chi Chan | Spatial moving structure | Best Researcher Award

Assoc Prof Dr. Tzu-Chi Chan | Tick-borne diseases | Best Researcher Award

Assoc Prof Dr. National Formosa University, Taiwan

Dr. Tzu-Chi Chan (Watson) received his Ph.D. degree from National Tsing Hua University in 2012, specializing in Power Mechanical Engineering. Since then, he has joined the National Formosa University (NFU) in Taiwan. Dr. Chan has served at the Precision Machinery Research and Development Center (PMC), a research organization in the precision machinery field funded by the Republic of China government and several machinery companies. He was awarded the Ministry of Economic Affairs Excellent Research Personnel award in 2003 and served as the Vice Director at the Smart Machinery Promotion Office. Currently, he is an Associate Professor in the Department of Mechanical and Computer-Aided Engineering at National Formosa University.

Dr. Chan’s main research interests lie in Robotics and Automation Technology, Precision Machine Design, Finite Element Analysis and Testing, Machine Dynamics, and Smart Manufacturing Systems. He is a recipient of five Best Paper awards at IEEE conferences. Additionally, he received the 12th Chinese Society of Mechanism and Machine Theory (CSMMT) BEST PAPER AWARD and Professor Zeng Jinhuan’s Commemorative Paper Award in 2009. Dr. Chan has authored 97 research articles, one book, and 20 patents.

Professional Profiles:

Orcid

Degrees 🎓

School Nation Department Degree Date
National Tsing Hua University Taiwan, R.O.C. Power Mechanical Engineering Ph.D. 2006/08~2012/01
Experience 💼
Organization Title Department Date

Experience 💼

National Formosa University Associate Professor Department of Mechanical and Computer-Aided Engineering 2022/08~ Present
National Formosa University Director Continuing Education Center 2021/08~ Present
National Formosa University Assistant Professor Department of Mechanical and Computer-Aided Engineering 2018/08~2022/07
Smart Machinery Promotion Office Vice Director 2017/02~2018/07
Precision Machinery Research and Development Center (PMC) Director, Vice Director, Engineer Machine Tool Industry Development Division, Project Management Office, etc.

Research Interests 🔍

Robotics and Automation TechnologyPrecision Machine DesignFinite Element Analysis and TestingMachine DynamicsSmart Manufacturing System

 

✍️Publications Top Note :

Constructing the Industrial Ecology of Metal Processing Industry with IIOT Intelligent Sensing Technology

Duration: 2018-12 to 2021-11

Grant: Ministry of Science and Technology (Taichung, TW)

Source: Tzu-Chi Chan

Automatic Balancer for High-Speed Spindle and Intelligent Machining of Machine Tools

Duration: 2018-11 to 2021-10

Grant: Ministry of Science and Technology (Taichung, TW)

Source: Tzu-Chi Chan

Analyzing Positional Accuracy and Structural Efficiency in Additive Manufacturing Systems with Moving Elements

Journal: Results in Engineering

Date: 2024-09

DOI: 10.1016/j.rineng.2024.102344

Contributors: Tzu-Chi Chan; Sai Vijay Medarametla; Ratnakar Behera

Enhancing Five-Axis Machine Tool Performance Through ESG-Based Design Optimization

Journal: International Journal of Precision Engineering and Manufacturing-Green Technology

Date: 2024-06-17

DOI: 10.1007/s40684-024-00642-8

Contributors: Aman Ullah; Tzu-Chi Chan; Shinn-Liang Chang

Strategy and Computational Examination of Surface Grinding Machine with Predictive Diagnostic Performance System During Operation

Journal: The International Journal of Advanced Manufacturing Technology

Date: 2024-06-13

DOI: 10.1007/s00170-024-13987-w

Contributors: Tzu-Chi Chan; Aman Ullah; Arindam Dutta

Numerical Technique with Innovative Strategies for Performance Enhancement in Micro-Probe Measuring Equipment

Journal: Microsystem Technologies

Date: 2024-01

DOI: 10.1007/s00542-023-05568-w

Contributors: Tzu-Chi Chan; Han-Huei Lin; Aman Ullah; Chia-Chuan Chang

Study on Kinematic Structure Performance and Machining Characteristics of 3-Axis Machining Center

Journal: Applied Sciences

Date: 2023-04

DOI: 10.3390/app13084742

Contributors: Tzu-Chi Chan; Chia-Chuan Chang; Aman Ullah; Han-Huei Lin

Simulation, Modeling, and Experimental Verification of Moving Column Precision Grinding Machine

Journal: Journal of the Chinese Institute of Engineers

Date: 2022-01-02

DOI: 10.1080/02533839.2021.1983464

Contributors: Tzu-Chi Chan; Keng-Chang Chang; Shinn-Liang Chang; Po-Hui Chiang

Effect of Moving Structure on the Spatial Accuracy and Compensation of the Coordinate Measuring Machine

Journal: International Journal of Precision Engineering and Manufacturing

Date: 2021-09

DOI: 10.1007/s12541-021-00560-8

Contributors: Tzu-Chi Chan; Yu-Ping Hong; Jia-Hong Yu