Fakhar Muhammad Abbas | Civil Engineering | Best Researcher Award

Dr. Fakhar Muhammad Abbas | Civil Engineering | Best Researcher Award

Assistant professor at COMSATS University Islamabad, Abbottabad Campus, Pakistan. 

Dr. Fakhar Muhammad Abbas is an Assistant Professor at COMSATS University Islamabad, Abbottabad Campus, Pakistan. With a strong background in hydraulics and water resources, his research expertise includes numerical modeling, eco-hydraulics, and sediment transport. Dr. Abbas has published numerous papers in reputable journals and has presented at various international conferences. He is a recipient of the Japanese Government Scholarship (MEXT) for his doctoral degree and is an approved supervisor by the Higher Education Commission (HEC), Pakistan.

Professional Profile

scholar

Education🎓

– Ph.D. in Civil and Environmental Engineering, Saitama University, Japan (2019-2022) – Thesis: Increase in Energy reduction of levee-overtopping flow by utilizing a water cushion on pooled water and generating small-scale turbulences by geogrid at the levee toe.- (link unavailable) in Civil and Environmental Engineering, University of Engineering and Technology Taxila, Pakistan (2017-2019) – Thesis: Experimental study of inclined bridge piers in Laboratory Flume.- (link unavailable) in Civil Engineering, Bahauddin Zakariya University (BZU) Multan, Pakistan (2011-2016)

Experience 💼

– *Assistant Professor*, COMSATS University Islamabad, Abbottabad Campus (2022-Present) – Teaching courses in fluid mechanics, hydrology, and environmental engineering. – Supervising undergraduate and graduate students.- *Research Assistant*, Saitama University, Japan (2019-2022) – Conducted research on hydraulics and water resources.- *Lecturer*, Quaid-e-Azam College of Engineering & Technology (2016-2018)

Research Interests🔍

Dr. Fakhar Muhammad Abbas’ research focuses on:- Hydraulics and water resources- Numerical modeling- Eco-hydraulics- Sediment transport- Levee breaching and erosion

Awards🏆

– *Japanese Government Scholarship (MEXT)* for doctoral degree.- *Full-Time Student Scholarship* for Master’s degree program.- *Government College Merit Scholarship* for Higher Secondary School Education.- *Higher Education Commission (HEC) approved Supervisor*.

Top Noted Publications📄

1. Numerical Investigation of Flow Around Partially and Fully Vegetated Submerged Spur Dike 📰
2. CFD analysis of flow dynamics around the series of dikes with alternative length layout 💡
3. How Emergent Vegetation Patch Shapes Affect Flow Structure in Open Channel Environments 🌿
4. Numerical Investigation of Internal Flow Properties around Horizontal Layered Trees by Using the Reynolds Stress Model 🌳
5. Utilization of geogrid and water cushion to reduce the impact of nappe flow and scouring on the downstream side of a levee

Prof. Dr. Karim El Moutaouakil | Control optimal | Best Researcher Award

Prof. Dr. Karim El Moutaouakil | Control optimal | Best Researcher Award

Professor,  Sidi Mohamed Ben Abdellah University, Morocco.

Mouhamed Ettaouil is a highly skilled individual with a strong background in computer science and operations research. He has obtained multiple advanced degrees, including PhDs from Ibn Tofail University and the Faculty of Sciences and Techniques of Fez. His expertise lies in artificial intelligence, data analytics, and statistical learning, with a focus on designing decision-making systems in computer vision, logistics, and economics.

Professional Profile

scopus

Education 🎓

*PhD in Statistical Learning*, Ibn Tofail University, Morocco (2017)*PhD in Computer Science and Operations Research*, Faculty of Sciences and Techniques of Fez, Morocco (2011)*Master in Applied Mathematics*, Faculty of Science and Technology of Fez (1998-1999)*Artificial Intelligence Analyst/Business Analytics*, University of Colorado Boulder, USA (2020)*Artificial Intelligence Analyst*, Skills Academy, IBM, USA (2020)

Experience 💼

*PhD in Statistical Learning*, Ibn Tofail University, Morocco (2017)*PhD in Computer Science and Operations Research*, Faculty of Sciences and Techniques of Fez, Morocco (2011)*Master in Applied Mathematics*, Faculty of Science and Technology of Fez (1998-1999)*Artificial Intelligence Analyst/Business Analytics*, University of Colorado Boulder, USA (2020)*Artificial Intelligence Analyst*, Skills Academy, IBM, USA (2020)

 

Research Focus 🔍

*PhD in Statistical Learning*, Ibn Tofail University, Morocco (2017)*PhD in Computer Science and Operations Research*, Faculty of Sciences and Techniques of Fez, Morocco (2011)*Master in Applied Mathematics*, Faculty of Science and Technology of Fez (1998-1999)*Artificial Intelligence Analyst/Business Analytics*, University of Colorado Boulder, USA (2020)*Artificial Intelligence Analyst*, Skills Academy, IBM, USA (2020)

Awards and Honors 🏆

– Mastery Award Badge, Skills Academy, IBM, USA (2020)

Publication Top Notes

– The Continuous Hopfield Networks (CHN) for the placement of the Electronic Circuit Problem 💻
– The Placement of Electronic Circuits Problem: A Neural Network Approach 🤖
– Improved Optimal Competitive Hopfield Network for the Maximum Stable Set Problem 📊
– Image Medical Compression by A new Architecture Optimisation Model for the Kohonen Networks 🏥
– A new architecture optimization model for the Kohonen networks clustering 📈
– A new algorithm to reduce the size of the continuous Hopfield network 💻
– Learning Algorithm of Kohonen Network With Selection Phase 📚
– A New Algorithm for Optimization of the Kohonen Network Architectures Using the Continuous Hopfield Networks

 

Conclusion

 

The candidate’s strong educational background, diverse research experience, and published papers make them a compelling candidate for the Best Researcher Award. By highlighting collaboration, impact, and research continuity, the candidate could further strengthen their application and demonstrate their potential for continued excellence in research.

Ms. Kiran | Thermal Behaviors | Best Researcher Award

Ms. Kiran | Thermal Behaviors | Best Researcher Award

Senior Research Fellow, CSIR-National Physical Laboratory, New Delhi, India

Kiran, affiliated with CSIR-National Physical Laboratory, works in the field of materials science with a focus on crystal growth and nonlinear optics. With a strong background in physics, Kiran’s research aims to contribute to advancements in optoelectronic devices. Kiran’s work involves both experimental and theoretical aspects of material science, ensuring a comprehensive approach to research. Effective communication of research findings is also a priority, as evidenced by numerous publications in reputable journals. Kiran’s academic journey began with an (link unavailable) in Physics from S.S. Jain Subodh P.G. Autonomous College, Jaipur, followed by a Ph.D. at CSIR-National Physical Laboratory.

Professional Profile

scholar

Education 🎓

– (link unavailable) in Physics: S.S. Jain Subodh P.G. Autonomous College, Jaipur University of Rajasthan (2016-2018)
– Specialized in Physics with a strong academic record, achieving a percentage of 80.75%. This foundational education provided a robust understanding of physical principles and experimental methodologies.
– Ph.D. in Physical Sciences: CSIR-National Physical Laboratory, New Delhi (2020-ongoing)
– Research focuses on the study of Guanidinium Based Single Crystals for Nonlinear Optical Applications under the supervision of Dr. N. Vijayan. This involves synthesizing and characterizing materials with potential applications in nonlinear optics and understanding their properties at a fundamental level.

Experience 💼

– Involves synthesizing organic materials and growing crystals using various techniques. Kiran is skilled in operating sophisticated instruments for material characterization and has contributed to the development of reference materials for calibration purposes.

Research Focus 🔍

Kiran’s research interests include materials science, crystal growth, fabrication of nonlinear optical devices, and nanomaterials. Kiran’s Ph.D. thesis focuses on studying Guanidinium Based Single Crystals for Nonlinear Optical Applications. 🔬

Awards and Honors 🏆

Kiran has received the Best Poster Presentation Award at “NBL-2021” and “XXV NSCGA-2023”. Kiran was also awarded the 3rd Prize in Poster Presentation at NSD-2024 and has held CSIR-Junior Research Fellow and CSIR-Senior Research Fellow positions. 🌟

 

Publication Top Notes

 

1. Investigation on synthesis, growth, Hirshfeld surface and third order nonlinear optical properties of Urea-Succinic Acid single crystal 🔍
– Authors: D Nayak, N Vijayan, M Kumari, P Vashishtha, S Das, B Sridhar, G Gupta, …
– Journal: Optical Materials
– Year: 2022
– Volume: 124
– Pages: 112051
2. Unveiling the optical, thermal and nonlinear behavior of guanidinium benzenesulfonate 🔍
– Authors: Kiran, N Vijayan, N Sarkar, D Joshi, K Kumar, S Yadav, S Das
– Journal: Optical Materials
– Year: 2024
– Volume: 147
– Pages: 114683
3. In situ growth of an ethyl p-hydroxybenzoate single crystal by the vertical Bridgman technique 🔬
– Authors: D Nayak, N Vijayan, M Kumari, N Vashistha, M Kumar, RP Pant
– Journal: Applied Crystallography
– Year: 2021
– Volume: 54
– Pages: 1340-1348
4. A comprehensive assessment on synthesis, growth, theoretical & optical properties of glycine zinc sulphate pentahydrate single crystal 📊
– Authors: Kiran, N Vijayan, D Nayak, M Kumari, Vinod, K Kumar, P Vashishtha, …
– Journal: Journal of Materials Science: Materials in Electronics
– Year: 2023
– Volume: 34
– Pages: 1132
5. Shock-wave-induced variation in structural, optical and third-order nonlinear properties of an L-ascorbic acid single crystal 💥
– Authors: A Krishna, N Vijayan, S Yadav, SK Saini, R Yadav, U Varshney, …
– Journal: Applied Crystallography
– Year: 2024
– Volume: 57
– Pages: 115-124
6. Growth, structural, optical, thermal and terahertz time-domain spectroscopy of l-alanine single crystal 🔍
– Authors: S Yadav, M Kumari, D Nayak, N Vijayan, M Jewariya
– Journal: Optical Materials
– Year: 2023
– Volume: 145
– Pages: 114447
7. Effect of shock wave on surface morphology and optical properties of acid phthalate based single crystals 💥
– Authors: M Kumari, N Vijayan, D Nayak, P Vashishtha, AK Gangwar, G Gupta, …
– Journal: Optical Materials
– Year: 2022
– Volume: 133
– Pages: 112986
8. Synthesis, crystal structure, Hirshfeld surface analysis and nonlinear optical characteristics of glycine cobalt sulfate pentahydrate single crystal 🔬
– Authors: Kiran, N Vijayan, D Nayak, N Sarkar, B Sridhar, …
– Journal: Inorganic Chemistry Communications
– Year: 2024
– Volume: 164
– Pages: 112392
9. Investigation on growth, Hirshfeld surface, optical, thermal and topological properties of nonlinear optical p-nitrophenol single crystal 🔍
– Authors: Jyoti, N Vijayan, Kiran, D Joshi, P Goswami, M Kavimani, V Balachandran, …
– Journal: Journal of Materials Science: Materials in Electronics
– Year: 2024
– Volume: 35
– Pages: 1231
Conclusion

The researcher has a strong foundation in materials science, crystal growth, and nonlinear optical devices, with expertise in experimental techniques and advanced analytical instruments. Their contributions to the development of Indian Reference Materials and publication record demonstrate their potential for impactful research. With some further efforts to expand their publication record, collaboration, and research interests, the researcher would be an excellent candidate for the Best Researcher Award. Overall, the researcher shows promise and potential for making significant contributions to their field, making them a suitable nominee for the award.

 

Prof. Jianlong Ji | Micro-nano devices and systems | Best Researcher Award

Prof. Jianlong Ji | Micro-nano devices and systems | Best Researcher Award

Vice Dean, College of Integrated Circuits, Taiyuan University of Technology, Taiyuan, China

As a distinguished educator and researcher in integrated circuits, I have been serving as the Vice Dean of the College of Integrated Circuits at Taiyuan University of Technology. With a strong academic background and extensive research experience, I have made significant contributions to the field of micro-nano devices and systems. My work focuses on developing innovative solutions for various applications, and I have published numerous papers in reputable journals 📚💻.

Profile

scholar

🎓 Education

– Doctor of Engineering (2010.09-2014.07): Taiyuan University of Technology (Joint Training Program at Tsinghua University) 📚– Master of Engineering (2007.09-2010.07): Taiyuan University of Technology 🎓– Bachelor of Engineering (2003.09-2007.07): Taiyuan University of Technology 📚

👨‍🔬 Experience

– Vice Dean, College of Integrated Circuits (2024.10-now): Taiyuan University of Technology 💼– Deputy Director (2022.12-2024.02): Xinzhou Economic Development Zone Management Committee 📈– Visiting Scholar (2021.09-2022.07): Tsinghua University 📚– Visiting Scholar (2018.01-2019.01): North Carolina State University

🔍 Research Interest

– *Micro-Nano Devices and Systems* 🔍– *Integrated Circuits* 💻– *Sensor Technology* 🌡️– *Nanotechnology*

Awards and Honors🏆

– *Outstanding Young Talent, Shanxi Province* 🏆– *Sanjin Talents, Support Program for Outstanding Young Talents* 🌟– *First Prize, Natural Sciences of Shanxi Province Prize*

📚 Publications 

1. “Ultra-low LOD H2O2 sensor based on synergistic Nernst potential effect” 📊
2. “A wearable enzyme sensor enabled by the floating-gate OECT with poly (benzimidazobenzophenanthroline) as the catalytic layer”

Conclusion

The researcher demonstrates significant potential for the Best Researcher Award, with a strong academic background, extensive research experience, and notable publications. By addressing areas for improvement, such as interdisciplinary collaboration and international exposure, the researcher can further solidify their position as a leading expert in integrated circuits.

huang wei | engineering vibration and noise control | Best Researcher Award

Prof. Dr. huang wei | engineering vibration and noise control | Best Researcher Award 

Professor level senior engineer, Ph.d., SINOMACH Academy of Science and Technology Co. Ltd, SINOMACH Research Center of Engineering Vibration Control Technology, China

Huang Wei is a renowned expert in vibration control and noise reduction. With a strong academic background and extensive research experience, he has made significant contributions to the field of vibration engineering. His work has been recognized through various awards and honors, and he continues to be an active researcher and presenter at conferences worldwide.

Profile

orcid

Education 🎓

Huang Wei received his education in China, graduating with a degree in a relevant field. Although specific details of his educational background are not provided, his academic achievements and research experience demonstrate a strong foundation in vibration engineering and related disciplines.

Experience 💼

Huang Wei has accumulated extensive experience in vibration control and noise reduction through various research projects and collaborations. He has worked on projects funded by government agencies and industry partners, demonstrating his ability to secure funding and work with diverse stakeholders. His experience also includes presenting research at conferences and publishing papers in academic journals.

Awards and Awards 🏆

Huang Wei has received recognition for his contributions to vibration engineering, although specific details of the awards and honors are not provided. His achievements demonstrate expertise and dedication to his field, earning him a reputation as a leading researcher.

Research Focus

Huang Wei’s research focuses on vibration control, noise reduction, and related topics. He explores innovative methods and technologies to mitigate vibration and noise, with applications in various industries, including construction, manufacturing, and defense. His work aims to improve the performance, safety, and efficiency of systems and structures.

Publications 📚

1. Vibration-sensitive equipment-decoupled vibration control-mass concrete foundation-soil spring 🌆
2. MRD parameter identification and its application in semiactive vibration control of power equipment and explosive vibration 💻
3. MRD parameter identification and its application in semiactive vibration control of power equipment and explosive vibration 💥
4. MRD parameter identification and its application in power equipment vibration control and explosion isolation 🚀
5. Equipment, Building Floor Dynamic Vibration Absorption Design and Optimization 🏢
6. Comfort Technical Standards—Wind-induced, human-induced, power equipment, traffic vibration and secondary radiated noise 🗣️
7. Engineering Vibration, Secondary Radiated Noise Related Comfort Standards and Building Vibration Isolation 📊

Arman Hajiha | Retrofitting of structures | Best Researcher Award

Mr. Arman Hajiha | Retrofitting of structures | Best Researcher Award

PhD candidate,Politecnico di Torino, Italy

Arman Hajiha is a civil engineer and researcher with a strong passion for structural analysis and design. Born in Tehran, Iran, he has pursued his academic and professional career in Iran and Italy. With a solid educational background and research experience, Arman aims to contribute to the advancement of civil engineering and structural analysis. 🌉

Profile

orcid

Education🎓

Arman Hajiha holds a BSc in Civil Engineering from Islamic Azad University (2009-2014) and an MSc in Civil Engineering – Structure from Science and Culture University (2016-2018). He is currently pursuing his second MSc in Civil Engineering – Structural Analyses at Politecnico di Torino, Italy. His research focuses on composite truss joints and strengthening techniques. 📚

Experience 💼

Arman Hajiha has worked as a Structural Design Engineer at P-Delta Company (2015-2016) and as a Physics instructor at Aspiyan Group Company (2020-present). He has also been an individual trainer in Physics and Mathematics for over 10 years. Additionally, he has been involved in various research projects, including the analysis of composite truss joints and the development of strengthening techniques. 🌆

Awards & Honors  🏆

Arman Hajiha has received several awards and honors, including the Top Ranked Student in MSc and the Highest Possible Score in Thesis. He was also the Winner of the Best Calculation Handbook in the 5th Iran National Steel Bridge Competition and the Runner-up in the Most Economic Structure Design and the Most Efficient Structure Design categories. 🎉

Research Focus  🔬

Arman Hajiha’s research focus lies in the field of structural analysis and design, particularly in the analysis of composite truss joints and the development of strengthening techniques. His research aims to improve the safety and efficiency of structural systems, with a focus on innovative materials and techniques. 🌈

Publications

1. Retrofitting of a steel truss joint by creating composite connections and PTMSs (post-tensioned metal straps) 🌉
2. Steel Bridges strengthening with composite joints and Post-Tensioned Metal Strap 🌊
3. Zoning, Sampling and Trip Distribution Analysis Data-Driven Transport Planning in Madison Metropolitan Area (case study) 🚗
4. Influence of Varied Subgrade Resilient Modulus on the Structural Design of Airport Runways ✈️
5. Trip Generation and Distribution model in Transport Planning of Madison Metropolitan Area (Case Study) 🚌

Conclusion

Arman Hajiha’s impressive educational background, research experience, and practical skills make him an outstanding candidate for the Best Researcher Award. While there are areas for improvement, his strengths and achievements demonstrate his dedication to advancing knowledge and making a positive impact in his field.

Hao Luo | Measurement | Best Researcher Award

Mr. Hao Luo | Measurement | Best Researcher Award

Associate Professor, TianJin university, China

Hao Luo is an Associate Professor at Tianjin University, specializing in high-speed optical fiber communication, all-optical signal processing, and photonic microwave technology. 📡🔬 With extensive contributions to optoelectronic oscillators and high-precision micro-displacement measurement, his work enhances optical and microwave system performance. 📊📡 He has published numerous papers in Optics Express, IEEE Photonics Technology Letters, and other prestigious journals. 🏆📖 His research supports advancements in next-generation telecommunication and high-frequency signal processing. 🚀🔍 As an active contributor to photonics and optical engineering, he continues to shape the field with innovative methodologies and applied technologies. 💡🔧

Profile

Orcid

🎓 Education:

📚 PhD in Optical Communication Engineering – Tianjin University 🏛️Master’s in Electrical Engineering – Tianjin University ⚙️Bachelor’s in Telecommunications Engineering – Tianjin University 🎓

👨‍🏫 Experience:

Associate Professor, Tianjin University (Present)  Senior Researcher in High-Speed Optical Fiber Communication Optoelectronic Oscillator Specialist – Applied Microwave & Optical Engineering  Industry Collaborator in Advanced Photonics & Signal Processing Mentor & Advisor for Graduate Research in Photonic Systems 📖🎓

🏅 Awards & Honors:

🏆 Best Paper Award – Optics Express Outstanding Research Contribution in Microwave Photonics Invited Speaker at International Photonics Conferences 🎤🌍Recognized for Excellence in High-Precision Optical Sensing 🔬🏆

🔬 Research Focus:

High-speed Optical Fiber Communication 📡📶 All-optical Signal Processing with Nonlinear Effects 💡 Photonic Microwave Frequency Synthesis 📊📡 High-precision Micro-displacement Measurement Next-gen Optical Sensing & Telecommunication Technologies 🚀📡

Publications

Multi-Wavelength Narrow-Spacing Laser Frequency Stabilization Technology Based on Fabry-Perot Etalon

📅 Publication Date: 2024-10-18

📖 Journal: Micromachines

🔗 DOI: 10.3390/mi15101269

👨‍🔬 Contributors: Ju Wang, Ye Gao, Jinlong Yu, Hao Luo, Xuemin Su, Shiyu Zhang, Ruize Zhang, Chuang Ma

📝 Summary:

 

Proposes a Fabry-Perot Etalon-based stabilization method for multi-wavelength lasers with narrow spacing.

Enhances the frequency stability of laser sources for high-precision optical communication and microwave photonic applications.

Offers practical improvements for laser frequency locking and optical coherence control.

2️⃣ A Practicable Optoelectronic Oscillator with Ultra-Low Phase Noise

📅 Publication Date: 2024-06-28

📖 Journal: Photonics

🔗 DOI: 10.3390/photonics11070614

👨‍🔬 Contributors: Ziyue Zheng, Jinlong Yu, Ju Wang, Chuang Ma, Hao Luo, Xuemin Su, Ye Gao

📝 Summary:

 

Develops an optoelectronic oscillator (OEO) with ultra-low phase noise for microwave photonic systems.

Utilizes advanced filtering techniques to suppress noise and enhance frequency stability.

Applicable for precision radar, satellite communications, and next-gen telecommunication networks.

3️⃣ Simplified 1.5 μm Distributed Feedback Semiconductor Laser (DFB-LD) Frequency Stabilization System Based on Gas Absorption Chamber

📅 Publication Date: 2024-06-28

📖 Journal: Photonics

🔗 DOI: 10.3390/photonics11070621

👨‍🔬 Contributors: Ju Wang, Ye Gao, Jinlong Yu, Ziheng Cai, Hao Luo, Chuang Ma

📝 Summary:

 

Introduces a gas absorption chamber-based method for stabilizing DFB-LD at 1.5 μm wavelength.

Provides enhanced wavelength stability crucial for optical sensing, metrology, and high-speed communication.

Reduces system complexity while maintaining high accuracy and reliability.

4️⃣ Microwave Photonic Frequency Multiplier with Low Phase Noise Based on an Optoelectronic Oscillator

📅 Publication Date: 2024-06-24

📖 Journal: Photonics

🔗 DOI: 10.3390/photonics11070588

👨‍🔬 Contributors: Hao Luo, Jinlong Yu, Ju Wang, Chuang Ma, Xu Han, Xuemin Su, Ye Gao, Shi Jia

📝 Summary:

 

Develops a microwave photonic frequency multiplier based on an optoelectronic oscillator (OEO).

Achieves low phase noise, making it ideal for radar, wireless networks, and precision measurement.

Enhances signal stability and spectral purity compared to traditional electronic multipliers.

5️⃣ High-precision Micro-displacement Sensing Based on an Optical Filter and Optoelectronic Oscillators

📅 Publication Date: 2023-06-05

📖 Journal: Optics Express

🔗 DOI: 10.1364/OE.493068

👨‍🔬 Contributors: Hao Luo, Jinlong Yu, Ju Wang, Chuang Ma, Xu Han, Xuemin Su

📝 Summary:

 

Proposes a high-precision displacement sensing system using optoelectronic oscillators and optical filtering techniques.

Provides sub-micron accuracy for precision engineering, biomedical imaging, and nanotechnology applications.

Demonstrates superior stability and noise reduction for long-term measurements.

6️⃣ High-precision Micro-displacement Measurement Method Based on Alternately Oscillating Optoelectronic Oscillators

📅 Publication Date: 2022-02-14

📖 Journal: Optics Express

🔗 DOI: 10.1364/OE.450812

👨‍🔬 Contributors: Ju Wang, Xuexin Guo, Jinlong Yu, Chuang Ma, Yang Yu, Hao Luo, Lingchao Liu

📝 Summary:

 

Develops a novel micro-displacement measurement system based on alternately oscillating optoelectronic oscillators.

Provides high-resolution displacement detection, essential for nano-positioning and high-precision instrumentation.

Offers superior noise suppression and measurement reliability.

7️⃣ Tunable Microwave Sawtooth Waveform Generation Based on One Single-drive Mach-Zehnder Modulator

📅 Publication Date: Not specified

📖 Journal: Optics Express

🔗 DOI: Not available

👨‍🔬 Contributors: Not specified

📝 Summary:

 

Explores a simplified method for generating tunable microwave sawtooth waveforms.

Uses a single-drive Mach-Zehnder modulator, reducing system complexity and improving efficiency.

Benefits radar signal processing, wireless communication, and advanced photonic circuits.

 

Conclusion

Dr. Hao Luo is a strong contender for the Best Researcher Award due to his exceptional contributions in optical communications, photonic signal processing, and high-precision measurement. His extensive research output, high-impact publications, and innovations in optoelectronics solidify his reputation as a leading scientist. To further strengthen his case, greater engagement in industry collaborations, large-scale projects, and interdisciplinary research would enhance his global impact.

 

Ryspek Usubamatov | Mechanics | Outstanding Scientist Award

Prof. Dr. Ryspek Usubamatov | Mechanics | Outstanding Scientist Award

Prof at Kyrgyz State Technical University, Kyrgyzstan

🎓Prof. Dr. Ryspek Usubamatov, an esteemed academic and innovator, has contributed immensely to mechanical, industrial, and manufacturing engineering. 🌍 Born in Kyrgyzstan, he earned his Ph.D. at Bauman Moscow State Technical University and holds over 500 publications, 61 patents, and 8 books. 📚 He has led research projects globally, including in the USA, UK, and Malaysia, and mentored numerous students. 🌟 His groundbreaking work in gyroscopic theory and high-efficiency turbines reflects his dedication to sustainable innovation.

Publication Profile

orcid

Education🎓

1994-96: Certificate in English Literature, KSTU  1994: University Administration, Kansas University, USA.  1993: Doctor of Technical Sciences, National Academy of Sciences, Kyrgyzstan. 1968-72: Ph.D., MSTU 1960-66: Professional Engineer Certificate, Mechanical Engineering, MSTU.  Multiple certifications from workshops globally in engineering, composite materials, web publishing, and business coaching.

Experience 👨‍🏫

Professor at UniMAP and UPM (2002-2016).  Professor of Automation and Production, KSTU (1972-1992).  Rector of KSTU (1992-1999).  Director, International University of Kyrgyzstan (1999-2002). Expert consultant for UNESCO and INTAS, promoting global scientific collaboration. Machine Tool Engineer, Bishkek Engineering Plant (1966-1968).

Awards and Honors🏅

State Medal for Valiant Labour, Kyrgyzstan (1982). Government Medal for Excellence in Education, Kyrgyzstan (1993) Bronze Medal, ITEX, Malaysia (2009). Silver Medal, ITEX, Malaysia (2014). Order of Merit, WIAF, Korea (2012). Fellowships and memberships in AAAS, UAMAE, and global academies.  Editorial board member of multiple scientific journals.

Research Focus⚙️

Productivity Theory for Industrial Engineering. Gyroscopic effects for rotating objects. High-efficiency turbine designs. Advanced machining processes and CNC. Automation, robotics, and material handling. Innovations in vane-type turbines and combustion engines  Dynamic system design and kinematics of machines. Econometrics and engineering collaboration projects.

Publications 📖

ptimization of Machining for the Maximal Productivity Rate of the Drilling Operations
Journal: International Journal of Mathematics for Industry
Published: August 2024 | DOI: 10.1142/S2661335224500230
Contributors: Ryspek Usubamatov, Abdusamad Abdiraimov

Maximal Productivity Rate of Threading Machine Operations
Journal: International Journal of Mathematics for Industry
Published: July 2024 | DOI: 10.1142/S2661335224500199
Contributors: Ryspek Usubamatov, Darina Kurganova, Sarken Kapayeva

Optimization of Face Milling Operations by Maximal Productivity Rate Criterion
Journal: Production Engineering
Published: June 2024 | DOI: 10.1007/s11740-023-01249-9
Contributors: Ryspek Usubamatov, Cholpon Bayalieva, Sarken Kapayeva, Tashtanbay Sartov, Gabdyssalyk Riza

Gyroscopic Torques Generated by a Spinning Ring Torus
Journal: Advances in Mathematical Physics
Published: January 2024 | DOI: 10.1155/admp/5594607
Contributors: Ryspek Usubamatov, John Clayton

Theory of Gyroscopic Effects for Rotating Objects
Book: Springer
Published: 2022 | DOI: 10.1007/978-3-030-99213-2

Optimization of Machining by the Milling Cutter
Preprint: December 2022 | DOI: 10.21203/rs.3.rs-2333647/v1
Contributors: Ryspek Usubamatov, Cholpon Bayalieva, Sarken Kapayeva, Tashtanbay Sartov

Inertial Forces and Torques Acting on a Spinning Annulus
Journal: Advances in Mathematical Physics
Published: September 2022 | DOI: 10.1155/2022/3371936
Contributors: Ryspek Usubamatov, Sarken Kapayeva, Zine El Abiddine Fellah

Erratum: Physics of Gyroscope Nutation
Journal: AIP Advances
Published: March 2021 | DOI: 10.1063/5.0040660

Physics of Gyroscope Nutation
Journal: AIP Advances
Published: October 2019 | DOI: 10.1063/1.5099647

Productivity Theory for Industrial Engineering
Book: Taylor and Francis, London
Published: July 2018

Conclusion

This candidate is an exceptional contender for the Research for Outstanding Scientist Award, with a remarkable track record of academic excellence, professional leadership, and contributions to mechanical engineering and manufacturing technologies. Their multidisciplinary expertise, extensive publication record, and international recognition make them a strong candidate. Enhancing focus on emerging technologies and sustainability-related applications would further strengthen their candidacy and relevance for this prestigious award.

Xin Ye | TiNi-based alloy additive manufacturing | Best Researcher Award

Dr. Xin Ye | TiNi-based alloy additive manufacturing | Best Researcher Award

Lecturer at  HElectric Power Electric Equipment Co., Ltd, China

🌟 Dr. Ye Xin, a distinguished lecturer and master tutor at the School of Materials Science and Engineering, Shanghai University of Engineering Science, specializes in superalloy welding, repair, and additive manufacturing. 📚 Holding a Ph.D. in Material Processing Engineering from Shanghai Jiao Tong University, he has made significant contributions to enterprise technical support and process optimization, earning recognition for his expertise in welding and remanufacturing technologies. 🌍

Professional Profiles:

orcid

Education 🎓

Ph.D. in Material Processing Engineering from Shanghai Jiao Tong University. 📘 International Welding Engineer Certification with expertise in arc and laser welding. 📗 Specialized in numerical simulation and optimization design for high-temperature alloy processing. 📕 Master Tutor and Technical Expert supporting academic and industry initiatives.

Experience 💼

Over 8 years as a lecturer and technical lead in superalloy welding. 🔬 Presided over 1 national experimental fund, 1 local research project, and contributed to 5 national initiatives. 🏗 Led or participated in 20+ consultancy and industrial projects, showcasing transformative innovation. ✍ Published 20+ peer-reviewed SCI and EI-indexed papers.

Awards and Honors 🏅

Recipient of prestigious national and provincial research grants. 🎖 Contributor to impactful collaborative projects in materials science. 🌟 Recognized for advancing high-temperature alloy repair technologies. 🎓 Celebrated for academic excellence and industry partnerships.

Research Focus 🔍

Superalloy welding, repair, and additive manufacturing. 📈 Advanced arc and laser welding for high-performance materials. 🔧 Numerical simulation to optimize material behavior and processing. 🔬 Developing cutting-edge technologies for industry innovation.

✍️Publications Top Note :

“Influence of Surface Pretreatment of Steel Substrate on the Interfacial Microstructure and Tensile Properties of Laser Al/Steel Joints”

Materials Letters (2024-12)

Focus: Investigates how surface treatments of steel substrates affect the microstructure and tensile strength in aluminum-steel laser joints.

DOI: 10.1016/j.matlet.2024.137523

“Study on Microstructure and Thermal Cracking Sensitivity of Deposited Ti6Al4V/Inconel 718 Composites Made by Two-Wire Arc Additive Manufacturing”

Materials (2024-12-06)

Focus: Explores the microstructure and cracking behavior of Ti6Al4V/Inconel 718 composites fabricated using two-wire arc additive manufacturing.

DOI: 10.3390/ma17235989

“The Differences in Bonding Properties and Electrical, Thermal Conductivity Between the Preferred Crystallographic Orientation Interface of Cu3Sn/Cu”

Surfaces and Interfaces (2024-03)

Focus: Studies the effects of crystallographic orientation on bonding and thermal/electrical properties at Cu3Sn/Cu interfaces.

DOI: 10.1016/j.surfin.2024.104152

“The Temperature Field Prediction and Estimation of Ti-Al Alloy Twin-Wire Plasma Arc Additive Manufacturing Using a One-Dimensional Convolution Neural Network”

Applied Sciences (2024-01-12)

Focus: Develops a CNN-based model for predicting temperature fields in additive manufacturing of Ti-Al alloys.

DOI: 10.3390/app14020661

“Dynamics of Microbubbles Induced by Thermal Shock in Inconel 718 Pulsed Laser Spot Welding and Formation of Micropores After Solidification in Molten Pool”

Journal of Materials Engineering and Performance (2023-12-07)

Focus: Examines microbubble dynamics and micropore formation during thermal shock in laser welding of Inconel 718.

DOI: 10.1007/s11665-023-08975-2

“Pulsed Laser Spot Welding Thermal-Shock-Induced Microcracking of Inconel 718 Thin Sheet Alloy”

Materials (2023-05-17)

Focus: Studies the effect of thermal shock on microcracking in thin-sheet Inconel 718 alloys.

DOI: 10.3390/ma16103775

“Study of Phase Evolution Behavior of Ti6Al4V/Inconel 718 by Pulsed Laser Melting Deposition”

Materials (2023-03-18)

Focus: Analyzes phase evolution in Ti6Al4V/Inconel 718 composite materials produced via pulsed laser deposition.

DOI: 10.3390/ma16062437

“Laser Welding Penetration Monitoring Based on Time-Frequency Characterization of Acoustic Emission and CNN-LSTM Hybrid Network”

Materials (2023-02-15)

Focus: Proposes a hybrid CNN-LSTM approach for real-time laser welding penetration monitoring.

DOI: 10.3390/ma16041614

“Heat Accumulation, Microstructure Evolution, and Stress Distribution of Ti–Al Alloy Manufactured by Twin‐Wire Plasma Arc Additive”

Advanced Engineering Materials (2022-05)

Focus: Explores heat accumulation, microstructure changes, and stress dynamics in Ti-Al alloys during twin-wire plasma arc manufacturing.

DOI: 10.1002/adem.202101151

“Effect of Weld Pool Flow and Keyhole Formation on Weld Penetration in Laser-MIG Hybrid Welding Within a Sensitive Laser Power Range”

Applied Sciences (2022-04-19)

Focus: Investigates weld penetration mechanisms during laser-MIG hybrid welding processes.

DOI: 10.3390/app12094100

Conclusion

Ye Xin’s robust academic background, extensive research contributions, and leadership in superalloy welding and additive manufacturing make him a strong candidate for the Best Researcher Award. His innovative projects and industry collaborations highlight his impact on advancing materials science. Addressing gaps in global collaboration, recognition, and intellectual property contributions could further bolster his candidacy for prestigious honors.

Changmin Shi | battery mechanics | Best Researcher Award

Dr. Changmin Shi | battery mechanics | Best Researcher Award

Postdoctoral Research Associate at  Brown University, United State

Changmin Shi is a Postdoctoral Research Associate at Brown University, specializing in energy materials mechanics and thermal energy management. He earned his Ph.D. in Materials Science and Engineering from the University of Maryland, focusing on high-energy-density lithium-sulfur batteries. He has an M.S. from Columbia University and a B.Eng. from the University of Science and Technology Beijing. Shi has secured significant research funding, received numerous awards, and delivered various invited talks. He has extensive teaching and mentoring experience and actively participates in DEI initiatives. His research interests include advancing thermal energy management, developing novel battery materials, and innovating mechanical devices for energy materials.

 

Professional Profiles:

Education and Training 📚🎓

Brown University (Providence, RI) 🏫 2023–PresentPostdoctoral Research Associate, School of EngineeringAdvisor: Dr. Brian W. SheldonResearch: Energy Materials Mechanics and Thermal Energy ManagementUniversity of Maryland (UMD) (College Park, MD) 🏛️ 2019–2023Ph.D., Materials Science and EngineeringAdvisor: Dr. Eric D. WachsmanDissertation: High-Energy-Density Lithium-Sulfur Batteries Using Garnet Solid Electrolyte: Performance and CharacterizationDissertation Committee: Dr. Liangbing Hu, Dr. Yifei Mo, Dr. Paul Albertus, Dr. Chunsheng WangColumbia University (New York, NY) 🗽 2017–2019M.S. Materials Science and EngineeringAdvisor: Dr. Yuan YangResearch: Flexible Lithium-ion Batteries with High Energy DensityUniversity of Science and Technology Beijing (USTB) (Beijing, CN) 🏯 2013–2017B.Eng. Metallurgical EngineeringAdvisor: Dr. Xindong WangDissertation: Pitting Corrosion Analysis of TiN-coated Metallic Bipolar Plates for PEM Fuel Cells

Research Interests (Materials and Mechanics) 🔬⚙️

Advancing thermal energy management materials and systems for space thermoregulation 🚀Developing novel materials for low-strain cathodes, safe composite polymer electrolytes, and new battery recycling approaches 🔋Innovating mechanical devices for investigating the mechanical properties of energy materials

Honors & Awards 🏆

All America Chinese Youth Federation Top 40 Under 30 (2024) 🌟Polymers Exceptional Reviewer (2024) 🌟Batteries Travel Grant (2024) 🌟Guest Editor, Batteries (2024) 🌟Princeton Pathways into the Academy Program, Princeton University (2024) 🌟ECS-IOP Trusted Reviewer (Top 15% awarded) (2024) 🌟Nano Research Energy Young Star Researcher Gold Award (2023) 🌟Editorial Board Member, Assistant Editor of Nano Research Energy (2023–Present) 🌟Best Editor Award, Nano Research Energy (2023) 🌟Early Career Distinguished Scholar Program, Honorable Mention, UC Irvine (2023) 🌟Postdoctoral Research Associate Conference Travel Fund, Brown University (2023) 🌟Chinese Government Award for Outstanding Self-Financed Students Abroad (2023) 🌟Youth Editorial Board Member of Nano Research Energy (2023) 🌟Jacob K. Goldhaber Travel Grant, UMD (2022) 🌟Future Faculty Program Fellow, UMD (2022) 🌟Outstanding Graduate Assistance Award (Teaching Excellence), UMD (2020) 🌟Dean’s Fellowship, UMD (2019–2020) 🌟Distinguished Outstanding Undergraduate, USTB (2017) 🌟Outstanding Undergraduate Dissertation, USTB (2017)

Teaching Experience 👩‍🏫

Brown University 🏫ENGN 2920H Materials and Interfaces for Energy Storage Materials 🔋Responsibility: Designed and led lithium-ion battery assembly lab session**ENGN 1420 K

✍️Publications Top Note :

Rechargeable solid-state lithium metal batteries with vertically aligned ceramic nanoparticle/polymer composite electrolyte
X Wang, H Zhai, B Qie, Q Cheng, A Li, J Borovilas, B Xu, C Shi, T Jin, …
Nano Energy, 60, 205-212 🪫🔋, 2019

Full Dissolution of the Whole Lithium Sulfide Family (Li2S8 to Li2S) in a Safe Eutectic Solvent for Rechargeable Lithium–Sulfur Batteries
Q Cheng, W Xu, S Qin, S Das, T Jin, A Li, AC Li, B Qie, P Yao, H Zhai, …
Angewandte Chemie, 131 (17), 5613-5617 💧🔋, 2019

Accordion-like stretchable Li-ion batteries with high energy density
C Shi, T Wang, X Liao, B Qie, P Yang, M Chen, X Wang, A Srinivasan, …
Energy Storage Materials, 17, 136-142 💪🔋, 2019

High‐energy‐density foldable battery enabled by zigzag‐like design
X Liao§, C Shi§ (co-first author), T Wang§, B Qie§, Y Chen, P Yang, …
Advanced Energy Materials, 9 (4), 1802998 🔄🔋, 2019

Extreme lithium-metal cycling enabled by a mixed ion-and electron-conducting garnet three-dimensional architecture
GV Alexander, C Shi, J O’Neill, ED Wachsman
Nature Materials, 22 (9), 1136-1143 ⚡🔋, 2023

Flexible Solid-State Lithium-Sulfur Batteries Based on Structural Designs
C Shi, M Yu
Energy Storage Materials, 57, 429–459 🔧🔋, 2023

3D Asymmetric Bilayer Garnet-Hybridized High-Energy-Density Lithium–Sulfur Batteries
C Shi, T Hamann, S Takeuchi, GV Alexander, AM Nolan, M Limpert, Z Fu, …
ACS Applied Materials & Interfaces, 15 (1), 751–760 🛠️🔋, 2023

High Sulfur Loading and Capacity Retention in Bilayer Garnet Sulfurized‐Polyacrylonitrile/Lithium‐Metal Batteries with Gel Polymer Electrolytes
C Shi, S Takeuchi, GV Alexander, T Hamann, J O’Neill, JA Dura, …
Advanced Energy Materials, 13 (42), 2301656 ⚛️🔋, 2023

Precipitation behavior of carbides in high-carbon martensitic stainless steel
Q Zhu, J Li, C Shi, W Yu, C Shi, J Li
International Journal of Materials Research, 108 (1), 20-28 🏗️🔬, 2017

All-Solid-State Garnet Type Sulfurized Polyacrylonitrile/Lithium-Metal Battery Enabled by an Inorganic Lithium Conductive Salt and a Bilayer Electrolyte Architecture
C Shi, GV Alexander, J O’Neill, K Duncan, G Godbey, ED Wachsman
ACS Energy Letters, 8 (4), 1803-1810 ⚙️🔋, 2023

Evolution of CaO–MgO–Al2O3–CaS–(SiO2) inclusions in H13 die steel during electroslag remelting process
H Wang, CM Shi, J Li, CB Shi, YF Qi
Ironmaking & Steelmaking, 45 (1), 6-16 🏭🔬, 2018

New Insights into Nail Penetration of Li‐Ion Batteries: Effects of Heterogeneous Contact Resistance
M Chen, Q Ye, C Shi, Q Cheng, B Qie, X Liao, H Zhai, Y He, Y Yang
Batteries & Supercaps 🔩🔋, 2019

A facile and effective design for dynamic thermal management based on synchronous solar and thermal radiation regulation
N Guo, L Yu, C Shi, H Yan, M Chen
Nano Letters, 24 (4), 1447-1453 🌞❄️, 2024

Radiative-coupled evaporative cooling: Fundamentals, development, and applications
L Yu, Y Huang, W Li, C Shi, BW Sheldon, Z Chen, M Chen
Nano Research Energy, 3 (2) 💧🌡️, 2024

3D bridge-arch-structured dual-side evaporator for practical, all-weather water harvesting and desalination
M Chen, S Li, X Chen, Y Huang, B Liu, H Yan, BW Sheldon, Q Li, …
Journal of Materials Chemistry A, 12 (16), 9574-9583 💧🏗️, 2024

Optimum slagging materials smelting in combined-blowning converter based on single-slag steelmaking
YAOY WU Long, SHI Chang-min, LI Jing, XU Zhong-bo, HAN Xiao
Iron and Steel, 52 (1), 32-37 ⚙️🔬, 2017

High-energy-density deformable batteries
Y Yang, G Qian, X Chen, L Xiangbiao, C Shi, T Wang
US Patent App. 16/979,312 🔋💡, 2021

Challenges and Opportunities for Passive Thermoregulation
N Guo, C Shi§,* (co-first and corresponding author), N Warren, …
Advanced Energy Materials, 2401776 🔄🌡️, 2024

Blocking Li metal dendrites with piezoelectric solid polymer electrolytes through coupled piezoelectricity, mechanics, and electrochemistry effects
C Shi, S Kim, Y Qi, A Kingon, B Sheldon
American Chemical Society Spring 2024 Meeting 📅🔋, 2024

A mechanical-optical coupling design on solar and thermal radiation modulation for thermoregulation
N Guo, C Shi* (corresponding author), B Sheldon, H Yan, M Chen
Journal of Materials Chemistry A 🌞🛠️, 2024

Conclusion

The candidate’s groundbreaking contributions to materials science, particularly in energy storage, and their technical expertise make them an outstanding contender for the Best Researcher Award. Their innovative research in high-energy-density batteries and flexible Li-ion batteries directly addresses critical challenges in energy technology, showcasing exceptional academic and technical prowess. By fostering industrial partnerships, pursuing interdisciplinary research, and gaining broader international recognition, they could further enhance their candidacy and solidify their position as a global leader in the field.