Zhang sixiang | Energies | Best Researcher Award

Mr. Zhang sixiang | Energies | Best Researcher Award

Mr , Dalian Maritime University, China

Zhang Sixiang is a distinguished student at Dalian Maritime University, pursuing a degree in Materials Science and Engineering. Born in February 2004, in Shanxi Province, China, Zhang has demonstrated exceptional academic prowess, ranking top 1.8% in his class. As a member of the Communist Party (Probationary), Zhang has showcased his commitment to community service and leadership. His research endeavors focus on materials science, computational simulations, and experimental investigations.

Profile

Scopus

orcid

Education 🎓

Currently studying at Dalian Maritime University (a “211 Project” and “Double First-Class” university), Materials Science and Engineering (2022-2026) GPA: 3.97/5.00 (Top 1.8% of the class) Main courses: Solid-State Phase Transformation and Metal Heat Treatment (94), Materials Physical Chemistry (95), Materials Analysis and Testing Technology (95), Materials Mechanics (96)Familiarity with COMSOL, Abaqus, Ansys, Workbench, Ls-Dyna, and Solidworks software; XRD, TEM, SEM instruments; Origin data processing software and Office

Experience 💼

Research Assistant, Dalian Maritime University (2022-Present) Participated in research projects, including numerical studies on phase change materials and experimental investigations on aluminum alloy sheets Utilized computational simulations (COMSOL, Abaqus, Ansys) and experimental techniques (XRD, TEM, SEM) Co-authored research papers published in reputable journals, including International Communications in Heat and Mass Transfer and Journal of Materials Research Collaborated with professors and researchers, developing strong teamwork and communication skills

Awards and Awards 🏆

National Scholarship (Top 1, 1/55) Excellent Student award Emotional Intelligence ScholarshipNational First Prize, National University Student Mathematics Competition Third Prize, Liaoning Province University Student Materials Mechanics Competition National Third Prize, National University Student Metallography Skills Competition National Third Prize, National University Student Electrical Installation Technology Innovation Competition

Research Focus

Materials Science: phase change materials, aluminum alloy sheets, materials properties, and applicationsComputational Simulations: COMSOL, Abaqus, Ansys, numerical modeling, and simulation Experimental Investigations: XRD, TEM, SEM, materials characterization, and testing Energy Storage and Conversion: thermal energy storage, phase change materials, and heat transfer Materials Processing and Manufacturing: metal forming, machining, and surface treatment

Publications 📚

1. A bi-level robust optimization model for the coupling allocation of post-disaster personnel and materials assistance 🌪️
Journal of Cleaner Production, 2024-09, DOI: 10.1016/j.jclepro.2024.143099

2. Optimizing mobility resource allocation in multiple MaaS subscription frameworks 🚗
Annals of Operations Research, 2024-08-23, DOI: 10.1007/s10479-024-06209-9

3. Analysing preferences for integrated micromobility and public transport systems 🚴‍♀️
Transportation Research Part A: Policy and Practice, 2024-03, DOI: 10.1016/j.tra.2024.103996

4. Analysis on Braess paradox and network design considering parking in the autonomous vehicle environment 🤖
Computer-Aided Civil and Infrastructure Engineering, 2023-08-09, DOI: 10.1111/mice.13080

5. Equilibrium analysis of morning commuting and parking under spatial capacity allocation in the autonomous vehicle environment 🚗
Transportation Research Part E: Logistics and Transportation Review, 2023-04, DOI: 10.1016/j.tre.2023.103071

6. Capacity allocation and tolling-rewarding schemes for the morning commute with carpooling 🚗
Transportation Research Part C: Emerging Technologies, 2022-09, DOI: 10.1016/j.trc.2022.103789

7. Modelling and managing the integrated morning-evening commuting and parking patterns under the fully autonomous vehicle environment 🤖
Transportation Research Part B: Methodological, 2019-10, DOI: 10.1016/j.trb.2019.08.010

8. An ensemble machine learning-based modeling framework for analysis of traffic crash frequency 🚨
Computer-Aided Civil and Infrastructure Engineering, 2019-07-31, DOI: 10.1111/mice.12485

9. Integrating uncertainty considerations into multi-objective transportation network design projects accounting for environment disruption 🌎
Transportation Letters, 2019-07-31, DOI: 10.1080/19427867.2017.1359940

10. A network traffic assignment model for autonomous vehicles with parking choices 🤖
Computer-Aided Civil and Infrastructure Engineering, 2019-07-30, DOI: 10.1111/mice.12486

11. Range-Constrained Traffic Assignment with Multi-Modal Recharge for Electric Vehicles 🚗

Conclusion

Based on the provided information, the individual is an exceptional researcher with a strong academic background, interdisciplinary research experience, and a notable publication record. Their awards and honors demonstrate their commitment to excellence and innovation. While there are areas for improvement, the individual’s strengths make them a strong candidate for the Best Researcher Award.

SAMANTH KOKKILIGADDA | Energy and Catalysis | Best Researcher Award

Dr. SAMANTH KOKKILIGADDA | Energy and Catalysis | Best Researcher Award

Postdoctoral Researcher, Sungkyunkwan University, South Korea

Dr. Samanth Kokkiligadda is a research professor in Chemical Engineering at Sungkyunkwan University, South Korea, specializing in sustainable energy solutions. With a Ph.D. in Physics, his expertise spans nanomaterials, energy storage, and biomass conversion. His work integrates biopolymers and flexible films to advance eco-friendly supercapacitors and photocurrent applications. Dr. Kokkiligadda has received prestigious awards, including the SKKU Innovation Research Fellowship and a gold medal in Chemistry. Proficient in nanomaterials functionalization, quantum dots, and electrochemical techniques, he contributes significantly to material synthesis and energy conversion research.

Profile

orcid

🎓 Education

Ph.D. in Physics (2019–2023), Sungkyunkwan University, South Korea 🏅 Dissertation: “Nanomaterial-embedded DNA Nanostructures for Photocurrent and Supercapacitors.” Awarded the Best SKKU Innovative Research Award. M.Sc. in Physics (2016–2018), P.B. Siddhartha College of Arts & Sciences, India 🎓 Specialization in Condensed Matter Physics with an 80% aggregate score. B.Sc. in M.P.C. (2013–2016), Krishna University, India 🏆 Graduated with 91.3%, earning a gold medal in Chemistry.

💼 Experience

BK21+ Postdoctoral Researcher, Sungkyunkwan University, South Korea (Present) 🔬 Researching DNA-based nanostructures for photocurrent and supercapacitor applications. Developing high-performance biopolymer-based energy storage devices. Graduate Researcher, Sungkyunkwan University, South Korea (2019–2023) 🧪 Conducted extensive studies on functional nanomaterials, quantum dots, and MXenes. Specialized in electrode synthesis for energy storage applications.

🏆 Awards & Honors 

SKKU Innovation Research Fellowship (BK21), 2022 🌟 All India 14th Rank, UGC Merit Scholarship, 2016-17 🏅Pratibha Award & Gold Medal in Chemistry, Krishna University, 2016 🏆 KU-SET 17th Rank, Andhra Pradesh University Entrance Test 🎖 2nd Prize in Photography, Cognition Nalanda University, 2018 📸 1st Prize in Quiz, Andhra Pradesh Librarian Association, Avanigadda 🏅

🔬 Research Focus 

Dr. Kokkiligadda’s research focuses on nanomaterials for energy storage and conversion. His work integrates DNA-based nanostructures, biopolymer synthesis, and flexible energy storage films. He explores quantum dots, MXenes, and hybrid biomaterials to develop high-performance, eco-friendly supercapacitors and photocurrent devices. His expertise spans scanning electron microscopy, spectroscopy techniques, thermal vapor deposition, and electrode fabrication for batteries and PEC applications.

Publications

“Nanomaterial-embedded DNA Nanostructures for Photocurrent and Supercapacitors” 🔋

“Synthesis of Biomass-based Hybrid Nanomaterials for Sustainable Energy Conversion” 🌱

“Functionalization of Quantum Dots for High-Performance Energy Devices” ⚡

“MXenes in Flexible Supercapacitors: A Novel Approach” 🏭

“Electrode Fabrication Techniques for Advanced Energy Storage” ⚙️

“Innovative DNA Nanostructures for Photovoltaic Applications”

Conclusion:

Samanth Kokkiligadda is a highly deserving candidate for the Best Researcher Award due to his exceptional contributions to nanomaterials, energy storage, and sustainable innovations. With his expertise and growing recognition, he has the potential to become a key figure in the future of green energy research. Strengthening collaborations and increasing high-impact publications will further solidify his standing as a top-tier researcher.

Seyed Ali Hoseini | Lithium Ion Battery| Best Researcher Award

Mr. Seyed Ali Hoseini | Lithium Ion Battery | Best Researcher Award

Author at  University of Tehran, Iran

Seyed Ali Hoseini is a doctoral candidate at the University of Tehran, specializing in nanotechnology engineering with a focus on nanoelectronics. He is a passionate researcher in the areas of lithium-ion batteries, conductive scaffolds, and high-k materials. Ali has contributed to several publications and is dedicated to advancing energy storage technologies. He holds top academic distinctions, having been ranked first in both his bachelor’s and master’s degrees. He is an active member of the Nano-fabricated Energy Devices Lab, where he works on improving battery and supercapacitor performance. His expertise in nanomaterials, electrochemistry, and simulation modeling is reflected in his work on advanced materials for energy devices.

Publication Profile

scholar

Education 🎓

Ali Hoseini is pursuing a Ph.D. in Nanotechnology Engineering (Nanoelectronics) at the University of Tehran since 2020. He holds a master’s degree from Hakim Sabzevari University, where he ranked first in his class. His thesis focused on the design and simulation of pentacene-based field-effect transistors for bacteria detection. He completed his bachelor’s degree at Shahid Sattari Aeronautical University of Science, where he again ranked first. His academic excellence is reflected in a high GPA of 18.62/20 for his master’s and 18.86/20 for his bachelor’s.

Experience 🔬

Seyed Ali Hoseini’s research experience spans several roles, primarily as a Research Assistant at the Nano-fabricated Energy Devices Lab at the University of Tehran. He focuses on material synthesis for lithium-ion batteries and has hands-on experience with electrode slurry preparation, cell assembly, and electrochemical testing. Ali has also worked on COMSOL simulation and modeling, as well as semiconductor simulations using Silvaco. He is proficient in thin-film fabrication techniques, including chemical vapor deposition and sputtering. His work extends to electrochemical characterization techniques like CV, GCD, and EIS.⚙️🧪

Awards and Honors🏆

Ali Hoseini has consistently excelled academically, achieving first place in both his bachelor’s and master’s degrees. His research contributions have led to multiple publications in high-impact journals. He has also received recognition for his innovative work in nanotechnology and energy storage. His outstanding academic and research achievements have earned him various awards, including a prestigious research assistantship at the University of Tehran.

Research Focus🔬

Seyed Ali Hoseini’s research focuses on improving the performance of lithium-ion batteries and supercapacitors using nanostructured scaffolds and high-k materials. His work aims to enhance the efficiency of energy storage devices by optimizing electrode materials and structural designs. He also investigates electrochemical processes to improve the durability and cycle life of batteries. His expertise extends to simulation and modeling, material synthesis, and electrochemical testing. Ali is committed to advancing sustainable energy storage solutions through cutting-edge nanotechnology. 🔋

Publication  Top Notes

 

Design and Optimization of a CMOS Power Amplifier Using Innovative Fractional-Order Particle Swarm Optimization

Authors: S.A. Hosseini, A. Hajipour, H. Tavakoli

JournalApplied Soft Computing, 85, 105831 (2019)

Summary: This study focuses on the design and optimization of a CMOS power amplifier using fractional-order particle swarm optimization, an advanced optimization technique applied to improve amplifier performance. ⚡🔧

Lithium Demand and Cyclability Trade‐Off in Conductive Nanostructure Scaffolds in Terms of Different Tortuosity Parameters

Authors: S. Ali Hoseini, S. Mohajerzadeh, Z. Sanaee

JournalChemElectroChem, e202400428 (2024)

Summary: This research explores the relationship between lithium demand and cyclability in conductive nanostructure scaffolds, focusing on how various tortuosity parameters affect performance in energy storage devices like lithium-ion batteries. 🔋🧪

طراحی و شبیه سازی زیست حسگر تشخیص باکتری ایشرشیا کولی با استفاده از ترانزیستور اثر میدان ارگانیک بر روی نیم رسانای پنتاسین‎

Authors: سیدعلی حسینی, محمدهادی شاهرخ آبادی

Journalمهندسی برق (دانشکده فنی دانشگاه تبریز), 50, 669-678 (2020)

Summary: This paper discusses the design and simulation of a biosensor for detecting Escherichia coli bacteria using an organic field-effect transistor based on pentacene semiconductor material. 🦠

Conclusion

Seyed Ali Hoseini is an outstanding candidate for the Best Researcher Award, with a robust track record in innovative research in nanotechnology, energy storage, and electrochemical systems. His exceptional academic performance, cutting-edge contributions to lithium-ion battery technology, and interdisciplinary research skills make him a standout figure in his field. While there are areas for potential improvement, particularly in global collaborations and commercialization efforts, his research promises to drive forward both technological advancements and sustainable solutions in energy storage. Thus, he is highly deserving of recognition as a leading researcher in the field of energy and nanotechnology.

Weiju Hao | Hydrogen-Water splitting | Best Researcher Award

Assoc. Prof. Dr Weiju Hao | Hydrogen-Water splitting | Best Researcher Award

Associate Professor at University of Shanghai for Science and Technology, China

A Visiting Scholar with the Hua Zhang Group at City University of Hong Kong, this researcher has a rich background in applied and physical chemistry, with a specialization in nanomaterial design and catalytic materials for energy and environmental applications. They have held academic roles as a Lecturer at the University of Shanghai for Science and Technology and completed postdoctoral research at Fudan University. Known for their innovative contributions, they have published over 40 SCI papers and hold five patents in catalytic materials and nanotechnology.

Publication Profile

orcid

Education 🎓 

Ph.D. in Physical Chemistry, East China University of Science and Technology (2012-2017) – Focused on nanomaterials, specifically liposomes, polymers, micelles, and upconversion nanomaterials, under Prof. Honglai Liu (Changjiang Scholar). B.Sc. in Applied Chemistry, Dalian Polytechnic University (2008-2012) – Foundation in chemistry with a focus on applied chemical principles. Postdoctoral Fellow, Material Science, Fudan University (2017-2019) – Developed an electrochemical testing platform for research in catalytic efficiency for HER/OER/CER reactions, under Prof. Dalin Sun.

Experience👨‍🏫 

Lecturer, University of Shanghai for Science and Technology (2019-2024) – Established an experimental platform for catalytic materials in HER/OER/CER, with a focus on water-splitting reactions and pollution mitigation.  Postdoctoral Researcher, Fudan University (2017-2019) – Built a robust electrochemical testing platform for industrial-grade water-splitting projects. Visiting Scholar, Hua Zhang Group, City University of Hong Kong (2024-Present) – Engaged in innovative nanomaterial research for energy applications.

Awards and Honors🏆 

Shanghai Natural Science General (2023) Shanghai “Medical and Industrial Intersection” project (2023) National Natural Science Foundation of China (2022) Shanghai Sailing Program (2020) First-Class Funding, China Postdoctoral Fund (2019)

Research Focus🔬 

Catalytic materials for sustainable energy – Designs metal boride and phosphide catalysts for high-efficiency HER/OER/CER reactions. Water-splitting and hydrogen production – Focuses on catalytic materials for efficient hydrogen production through water splitting. Water pollution mitigation – Develops electrodes for chlorine evolution reactions to combat water pollution. Nanomaterial synthesis – Specializes in liposomes, micelles, and mesoporous silica for energy storage and environmental applications.

Publication  Top Notes

Corrosion-resistant titanium-based electrodes synergistically stabilized with polymer for hydrogen evolution reaction

Journal: Journal of Colloid and Interface Science

Publication Date: February 2025

DOI: 10.1016/j.jcis.2024.10.061

Contributors: Shuo Weng, Xianzuan Deng, Jiayi Xu, Yizhou Wang, Mingliang Zhu, Yuqin Wang, Weiju Hao

Mild and rapid construction of Ti electrodes for efficient and corrosion-resistant oxidative catalysis at industrial-grade intensity

Journal: Journal of Colloid and Interface Science

Publication Date: February 2025

DOI: 10.1016/j.jcis.2024.10.010

Contributors: Rui Xiao, Dingkun Ji, Liugang Wu, Ziyan Fang, Yanhui Guo, Weiju Hao

Regulating coordination environment in metal-organic framework@cuprous oxide core-shell catalyst for promoting electrocatalytic oxygen evolution reaction

Journal: Journal of Colloid and Interface Science

Publication Date: January 2025

DOI: 10.1016/j.jcis.2024.09.040

Contributors: Hui Wang, Zijian Wang, Jin Ma, Jian Chen, Hong Li, Weiju Hao, Qingyuan Bi, Shuning Xiao, Jinchen Fan, Guisheng Li

CDs “inserted” abundant FeB-based electrode via “local photothermal effect” strategy toward efficient overall seawater splitting

Journal: Inorganic Chemistry Frontiers

Publication Year: 2024

DOI: 10.1039/D4QI00415A

Contributors: Shiheng Liang, Liugang Wu, Yiming Wang, Yuqi Shao, Hongyuan Song, Ziliang Chen, Weiju Hao

Construction of a phosphorus-based integrated electrode for efficient and durable seawater splitting at a large current density

Journal: Inorganic Chemistry Frontiers

Publication Year: 2024

DOI: 10.1039/D3QI02222F

Contributors: Jiajing Xia, Lujia Zhang, Yizhou Wang, Weiju Hao

Reasonable regulation of flexible sulfur-based bifunctional catalytic electrodes for efficient seawater splitting

Journal: Inorganic Chemistry Frontiers

Publication Year: 2024

DOI: 10.1039/D3QI02575F

Contributors: Fengjing Lei, Xunwei Ma, Xinyun Shao, Ziyan Fang, Yuqin Wang, Weiju Hao

Self-hydrolysis of gelatin-coupled boride electrode enabling ultrastability for overall seawater splitting at industrial environment

Journal: Materials Today Energy

Publication Date: December 2024

DOI: 10.1016/j.mtener.2024.101705

Contributors: Weiju Hao, Xinke Huang, Rikai Liang, Jinli Fan, Jia Liang, Yanhui Guo, Qingyuan Bi, Jichen Fan, Ziliang Chen

Conclusion

With an impressive track record of research, patents, publications, and funding achievements, [Name of the Researcher] is a strong candidate for the “Best Researcher Award.” Their expertise in catalytic materials and hydrogen generation, combined with impactful innovations, places them at the forefront of sustainable energy research. Continued exploration of interdisciplinary applications, along with enhanced global engagement and mentorship roles, would further solidify their standing as an influential leader in the field. Given their achievements, commitment to sustainable innovation, and ongoing contributions to science and technology, the nominee is exceptionally well-suited for this prestigious award.

Mr. Bingtao Wang | Energy consumption model | Best Researcher Award

Mr. Bingtao Wang | Energy consumption model | Best Researcher Award

Mr. Bingtao Wang, Shan Dong University, China

Bingtao Wang, currently a Master’s student in Communication Engineering at Shandong University (Weihai), holds a Bachelor’s degree in Electronic Engineering. His research focuses on energy consumption models and fault diagnosis in mobile robots. Bingtao has led multiple innovative projects, including the development of a quadcopter UAV and a visual perception crawler robot. His significant contribution lies in the creation of robust energy models and diagnostic methods that enhance the efficiency and reliability of Three-Wheeled Omnidirectional Mobile Robots (TOMRs), paving the way for future advancements in autonomous navigation and robotics.

Professional Profiles:

Orcid

🎓 Academic and Professional Background (100 words max):

Bingtao Wang, male, was born in Liaocheng City, Shandong Province in September 2001. In 2023, he graduated from Shandong University (Weihai) with a Bachelor’s degree in Electronic Engineering. He is currently pursuing a Master’s in Communication Engineering at Shandong University (Weihai), College of Electrical and Engineering. His research focuses on energy consumption model building and fault diagnosis.

📝 Self-Declaration:

I authenticate that to the best of my knowledge the information given in this form is correct and complete. At any time, I am found to have concealed any material information, my application shall be liable to be summarily terminated without notice. I have read the terms and conditions and other policies of the Awards and agree to them.

✍️Publications Top Note :