Rakesh Parida | Energy Storage | Best Researcher Award

Dr. Rakesh Parida | Energy Storage | Best Researcher Award

Researcher | Sungkyunkwan University | South Korea

Dr. Rakesh Parida is an Indian chemist specializing in theoretical and computational chemistry, currently serving as a Postdoctoral Researcher in the Department of Chemistry at Sungkyunkwan University, South Korea, under the supervision of Prof. Jin Yong Lee. His research integrates density functional theory (DFT) and molecular dynamics (MD) simulations to investigate superalkalis, superhalogens, energy storage materials, biomolecular interactions, and small-molecule activation. He earned his Ph.D. from the National Institute of Technology Rourkela, India, with distinction, focusing on the design and applications of super-alkali/halogen complexes and reaction mechanisms. Over the years, Dr. Parida has significantly contributed to computational modeling of advanced materials for energy storage and biophysical systems. research publications in high-impact journals, editorial board membership, international collaborations, and active participation in conferences, he has established himself as a promising scientist in molecular modeling, energy materials, and computational chemical reactivity theory.

Professional Profile

Google Scholar

Education

Dr. Rakesh Parida earned his Ph.D. in Theoretical and Computational Chemistry from the National Institute of Technology (NIT) Rourkela, India, in April , securing an excellent. His doctoral thesis, supervised by Prof. Madhurima Jana and Prof. Santanab Giri, centered on a combined density functional theory and molecular dynamics approach to study the design and application of super-alkali/halogen complexes and reaction mechanisms. Before his doctorate, he completed his M.Sc. in Chemistry at Berhampur University, conducting research on “Quality Control Analysis of Sillimanite” under Dr. Satyanarayan Sahoo. His academic journey began with a B.Sc. in Chemistry (Hons.), Physics, and Mathematics from RCM Science College, Khallikote, Odisha, completed in  with a strong foundation in honors papers. His consistent academic excellence and training have shaped his expertise in computational chemistry, materials design, and molecular interactions.

Experience

Currently, Dr. Rakesh Parida works as a Postdoctoral Researcher at Sungkyunkwan University, South Korea focusing on computational modeling of advanced materials and biomolecular interactions under Prof. Jin Yong Lee. During his doctoral training at NIT Rourkela, he was actively engaged in research projects funded by the Department of Science and Technology (DST) in areas such as chemical reaction mechanisms, metal and organo-Zintl clusters, and biomolecular dynamics. He also gained teaching experience as a Teaching Assistant, conducting courses such as General Chemistry, Inorganic Chemistry, Group Theory, Physical Chemistry Lab, and Computational Chemistry Laboratory for undergraduate and postgraduate students. Additionally, he managed laboratory work for B.Tech and M.Sc. programs and mentored five postgraduate students, many of whom are now pursuing Ph.D.s at reputed international universities. His academic journey reflects a blend of advanced research, teaching, and mentoring in computational and theoretical chemistry.

Research Focus

Dr. Rakesh Parida’s research integrates density functional theory (DFT) and molecular dynamics (MD) simulations to explore advanced molecular systems and energy materials. He has designed superalkali complexes based on benzene, borazine, Cu3, and Au3 frameworks, studied Brønsted and Lewis acids from functionalized heterocycles, and modeled frustrated Lewis pairs for small-molecule activation. His computational studies extend to boron-based anion receptor additives for Li-ion batteries, force field generation for unknown atoms, and CO2 reduction pathways. He has analyzed the alkylation processes of Zintl clusters, investigated graphdiyne as an anode material, and studied heterostructures like MXene/borophene for next-generation energy storage. His biophysical work includes examining histidine tautomerism in amyloid-β proteins on Au surfaces to understand Alzheimer’s disease mechanisms. His research contributes to material design for batteries, catalytic activity, biomolecular interactions, and conceptual DFT, bridging fundamental chemical theory with real-world applications in energy storage and biomedicine.

Awards and Honors

Dr. Rakesh Parida has received numerous recognitions for his outstanding research contributions. He was awarded the Juan de la Cierva Scholarship by the Spanish Ministry of Science and the Ultra-High Performance Computing R&D Innovation Support Program from KISTI . His early achievements include qualifying the  with an All-India  examination. He was conferred the InSc Young Researcher Award for his impactful research in theoretical and computational chemistry. He also received DST-SERB Junior Research Fellowship and DST-BRNS Senior Research Fellowship during his Ph.D. training. His editorial contributions include serving as a Board Member for the International Journal of Computational and Theoretical Chemistry since. In addition, he is an active member of the Korean Chemical Society, regularly presenting his research at national and international conferences. These honors reflect his global recognition as an emerging scientist.

Publication Top Notes

On the making of aromatic organometallic superalkali complexes
Year: 2018
Citation: 45

Superalkali ligands as a building block for aromatic trinuclear Cu (i)–NHC complexes
Year: 2019
Citation: 39Solvent free synthesis of ferrocene based rhodamine–hydrazone molecular probe with improved bioaccumulation for sensing and imaging applications
Year: 2019
Citation: 29

Conclusion

Dr. Rakesh Parida’s impressive research experience, publication record, awards, and research funding make him a strong candidate for the Best Researcher Award. With some additional interdisciplinary collaboration, global impact, and research translation, he could further solidify his position as a leading researcher in his field.

Yu Han | lithium-ion battery | Best Researcher Award

Dr. Yu Han | lithium-ion battery | Best Researcher Award

lecturer, North China University of Technology, China

Yu Han is a lecturer at the School of Energy Storage Science and Engineering, North China University of Technology. She received her PhD from Tsinghua University and currently focuses on Si-based anode materials for lithium-ion batteries and new energy conversion & storage. Han’s research aims to improve energy storage technology and promote sustainable energy solutions.

Profile

scopus

Education 🎓

PhD, Institute of Nuclear and New Energy Technology, Tsinghua University (degree date not specified) Current affiliation: School of Energy Storage Science and Engineering, North China University of Technology, Beijing, China

Experience 🧪

Lecturer, School of Energy Storage Science and Engineering, North China University of Technology, Beijing, China (current)  Research focus on Si-based anode materials for lithium-ion batteries and new energy conversion & storage

Awards & Honors🏆

Unfortunately, the provided text does not mention any specific awards or honors received by Yu Han.

Research Focus 🔍

Si-based anode materials for lithium-ion batteries  New energy conversion & storage  Energy storage technology Sustainable energy solutions

Publications📚

Triboelectric materials with UV protection, anti-bacterial activity, and green closed-loop recycling for medical monitoring

Polymer-based solid electrolyte with ultra thermostability exceeding 300 °C for high-temperature lithium-ion batteries in oil drilling industries

Conclusion

Yu Han demonstrates a strong foundation in energy storage research, particularly in Si-based anode materials for lithium-ion batteries. However, to strengthen her candidacy for the Best Researcher Award, it would be beneficial to provide more information on her research output, awards, and honors, as well as any collaborative or international research experiences.

Seyed Ali Hoseini | Lithium Ion Battery| Best Researcher Award

Mr. Seyed Ali Hoseini | Lithium Ion Battery | Best Researcher Award

Author at  University of Tehran, Iran

Seyed Ali Hoseini is a doctoral candidate at the University of Tehran, specializing in nanotechnology engineering with a focus on nanoelectronics. He is a passionate researcher in the areas of lithium-ion batteries, conductive scaffolds, and high-k materials. Ali has contributed to several publications and is dedicated to advancing energy storage technologies. He holds top academic distinctions, having been ranked first in both his bachelor’s and master’s degrees. He is an active member of the Nano-fabricated Energy Devices Lab, where he works on improving battery and supercapacitor performance. His expertise in nanomaterials, electrochemistry, and simulation modeling is reflected in his work on advanced materials for energy devices.

Publication Profile

scholar

Education 🎓

Ali Hoseini is pursuing a Ph.D. in Nanotechnology Engineering (Nanoelectronics) at the University of Tehran since 2020. He holds a master’s degree from Hakim Sabzevari University, where he ranked first in his class. His thesis focused on the design and simulation of pentacene-based field-effect transistors for bacteria detection. He completed his bachelor’s degree at Shahid Sattari Aeronautical University of Science, where he again ranked first. His academic excellence is reflected in a high GPA of 18.62/20 for his master’s and 18.86/20 for his bachelor’s.

Experience 🔬

Seyed Ali Hoseini’s research experience spans several roles, primarily as a Research Assistant at the Nano-fabricated Energy Devices Lab at the University of Tehran. He focuses on material synthesis for lithium-ion batteries and has hands-on experience with electrode slurry preparation, cell assembly, and electrochemical testing. Ali has also worked on COMSOL simulation and modeling, as well as semiconductor simulations using Silvaco. He is proficient in thin-film fabrication techniques, including chemical vapor deposition and sputtering. His work extends to electrochemical characterization techniques like CV, GCD, and EIS.⚙️🧪

Awards and Honors🏆

Ali Hoseini has consistently excelled academically, achieving first place in both his bachelor’s and master’s degrees. His research contributions have led to multiple publications in high-impact journals. He has also received recognition for his innovative work in nanotechnology and energy storage. His outstanding academic and research achievements have earned him various awards, including a prestigious research assistantship at the University of Tehran.

Research Focus🔬

Seyed Ali Hoseini’s research focuses on improving the performance of lithium-ion batteries and supercapacitors using nanostructured scaffolds and high-k materials. His work aims to enhance the efficiency of energy storage devices by optimizing electrode materials and structural designs. He also investigates electrochemical processes to improve the durability and cycle life of batteries. His expertise extends to simulation and modeling, material synthesis, and electrochemical testing. Ali is committed to advancing sustainable energy storage solutions through cutting-edge nanotechnology. 🔋

Publication  Top Notes

 

Design and Optimization of a CMOS Power Amplifier Using Innovative Fractional-Order Particle Swarm Optimization

Authors: S.A. Hosseini, A. Hajipour, H. Tavakoli

JournalApplied Soft Computing, 85, 105831 (2019)

Summary: This study focuses on the design and optimization of a CMOS power amplifier using fractional-order particle swarm optimization, an advanced optimization technique applied to improve amplifier performance. ⚡🔧

Lithium Demand and Cyclability Trade‐Off in Conductive Nanostructure Scaffolds in Terms of Different Tortuosity Parameters

Authors: S. Ali Hoseini, S. Mohajerzadeh, Z. Sanaee

JournalChemElectroChem, e202400428 (2024)

Summary: This research explores the relationship between lithium demand and cyclability in conductive nanostructure scaffolds, focusing on how various tortuosity parameters affect performance in energy storage devices like lithium-ion batteries. 🔋🧪

طراحی و شبیه سازی زیست حسگر تشخیص باکتری ایشرشیا کولی با استفاده از ترانزیستور اثر میدان ارگانیک بر روی نیم رسانای پنتاسین‎

Authors: سیدعلی حسینی, محمدهادی شاهرخ آبادی

Journalمهندسی برق (دانشکده فنی دانشگاه تبریز), 50, 669-678 (2020)

Summary: This paper discusses the design and simulation of a biosensor for detecting Escherichia coli bacteria using an organic field-effect transistor based on pentacene semiconductor material. 🦠

Conclusion

Seyed Ali Hoseini is an outstanding candidate for the Best Researcher Award, with a robust track record in innovative research in nanotechnology, energy storage, and electrochemical systems. His exceptional academic performance, cutting-edge contributions to lithium-ion battery technology, and interdisciplinary research skills make him a standout figure in his field. While there are areas for potential improvement, particularly in global collaborations and commercialization efforts, his research promises to drive forward both technological advancements and sustainable solutions in energy storage. Thus, he is highly deserving of recognition as a leading researcher in the field of energy and nanotechnology.