Mr. Wei Tang | Renewable Energy | Best Researcher Award
Master’s student | Guangxi University | China
Wei Tang is a master’s student at the Center on Nanoenergy Research, Guangxi University, China. Affiliated with both the School of Physical Science & Technology and the State Key Laboratory of Featured Metal Materials and Life-cycle Safety for Composite Structures, he is actively engaged in research that bridges fundamental physics with real-world energy applications. Wei’s primary focus is on the design and optimization of triboelectric nanogenerators (TENGs) with high-density stacking structures, as well as their deployment in water wave energy harvesting. His work aligns with global goals for sustainable energy, contributing to the advancement of carbon neutrality technologies. Despite being early in is academic career, Wei has demonstrated remarkable potential in experimental research, nanotechnology, and materials science. He has participated in collaborative projects within his institution and is guided by experts in the field of nanoenergy. His methodical approach, combined with a passion for clean energy technologies, positions him as a promising young scholar. Wei’s academic pursuits are driven by a long-term vision of enabling self-powered systems through green energy harvesting. His ongoing research contributions, though still emerging, reflect a keen understanding of material-interface interactions and device physics relevant to next-generation energy systems.
Professional Profile
Orcid
Education
Wei Tang is currently pursuing a Master’s degree in Physics at Guangxi University, Nanning, China. He is enrolled in the School of Physical Science and Technology and works under the research umbrella of the Center on Nanoenergy Research. Guangxi University, a well-established institution recognized for its contributions to physical sciences and energy research, offers Wei access to state-of-the-art laboratories and a collaborative research environment. He is also affiliated with the State Key Laboratory of Featured Metal Materials and Life-cycle Safety for Composite Structures, where he receives interdisciplinary training related to materials science, nanoengineering, and sustainable energy technologies. Prior to his postgraduate studies, Wei Tang completed his undergraduate studies in Physics (or a related field—please provide this if available) with a strong foundation in solid-state physics, nanomaterials, and applied mechanics. His academic trajectory reflects a consistent interest in energy-harvesting systems, particularly the application of triboelectric effects and nanogenerators for powering small-scale and marine electronics. Throughout his educational journey, Wei has been mentored by leading faculty members and has developed a robust skill set in experimental physics, data analysis, and device prototyping. His education combines theoretical knowledge with hands-on research experience, forming the backbone of his current innovation efforts.
Experience
As a master’s student researcher at Guangxi University, Wei Tang has focused on cutting-edge studies involving triboelectric nanogenerators (TENGs) and water wave energy harvesting systems. Though early in his professional journey, Wei has gained significant laboratory experience through active participation in ongoing research at the Center on Nanoenergy Research. He has been involved in the design, fabrication, and testing of multi-layered, high-density stacking TENG devices, which are aimed at enhancing power output and durability in marine or ambient energy environments. Wei also contributes to interdisciplinary team efforts under the State Key Laboratory of Featured Metal Materials and Life-cycle Safety for Composite Structures, where he engages in collaborative experiments integrating mechanical design with electrical output analysis. His responsibilities include conducting materials characterization (e.g., SEM, FTIR, electrical output measurements), data interpretation, and prototype optimization. He is developing proficiency in simulation software and CAD tools for modeling device performance. In addition to research, Wei actively supports academic seminars and lab meetings, where he presents updates and shares findings with fellow researchers and supervisors. Although he has not yet held industrial or consultancy roles, his experience reflects a strong alignment with the goals of applied physics and energy systems engineering.
Research Focus
Wei Tang’s research centers on the development of **high-efficiency triboelectric nanogenerators (TENGs)** and **water wave energy harvesting systems**. His work aims to provide viable solutions for sustainable and self-powered energy sources by exploiting the triboelectric effect and mechanical motion from natural sources like ocean waves. He focuses particularly on the **design of high-density stacking architectures**, which increase the surface interaction area, thereby enhancing energy output efficiency. These devices hold promise for powering marine sensors, coastal monitoring devices, and low-power electronics in remote environments. Wei’s work intersects disciplines such as **materials science**, **solid-state physics**, and **mechanical engineering**, especially in the development and evaluation of composite structures and flexible energy-harvesting materials. Through collaboration with advanced labs at Guangxi University, Wei explores both theoretical and experimental approaches to optimize surface morphology, electrode integration, and material selection to reduce energy losses. His research also includes durability testing of devices in simulated aquatic environments and real-time wave simulations. In the long term, his focus is on scalable energy harvesting devices that contribute to the goals of **carbon neutrality** and **environmental sustainability**. Wei is committed to innovating renewable power solutions, especially in applications where grid access is limited or impractical.
Awards and Honors
As a graduate student still in the early stages of his academic career, Wei Tang is actively building his credentials and has not yet received formal individual awards or honors. However, his affiliation with prestigious research centers—such as the Center on Nanoenergy Research and the State Key Laboratory at Guangxi University—demonstrates that his academic work meets the competitive standards required for high-level institutional research participation. Wei has contributed to group achievements and collaborative milestones within research teams working on triboelectric nanogenerators and energy harvesting. His research outputs, including prototypes and test data, have been recognized in internal evaluations and institutional poster sessions. He is also being mentored for future participation in innovation competitions and research excellence awards at the national and regional level. As his research progresses toward publication and patent filing, Wei is expected to become a strong candidate for Young Researcher or Best Innovation recognitions in the field of applied nanotechnology and green energy. Participation in these high-impact research environments itself reflects the merit and potential of his contributions. As he builds his academic portfolio, he aims to apply for national scholarships and early-career science and technology innovation grants in China.
Publication Top Notes
1. Water-Wave Driven Triboelectric Nanogenerator Networks: A Decade of March in Blue Energy and Beyond
Journal: Advanced Materials Technologies DOI: 10.1002/admt.202500184
ISSN: 2365-709X
Contributors: Wei Tang, Guanlin Liu, Zhong Lin Wang
Date: 2025-07-26
2. A Geometric Thrust Amplifier Based Triboelectric Nanogenerator for Full-Spectrum Wave Energy Harvesting
Journal: Advanced Functional Materials
DOI: 10.1002/adfm.202507697
ISSN: 1616-301X, 1616-3028
Contributors: Liang Tuo, Weiyu Zhou, Wei Tang, Jiawei Li, Yongsheng Wen, Honggui Wen, Lingyu Wan, Guanlin Liu
Date: 2025-06-26