Assoc. Prof. Dr mamutjan tursun | Energy Conversion | Best Researcher Award

Assoc. Prof. Dr mamutjan tursun | Energy Conversion | Best Researcher Award

Prof, Kashi University, China

Mamutjan Tursun is a dedicated researcher and academician with expertise in materials science and chemistry. Currently, he serves as an Associate Professor at the College of Chemistry and Environmental Sciences, Kashgar University. His academic journey began with a (link unavailable) in Applied Chemistry from Xinjiang University, followed by an (link unavailable) in Physical Chemistry from Dalian University of Technology, and a Ph.D. in Materials Science and Engineering from Xi’an Jiaotong University.

Professional Profile

orcid

Education 🎓

– (link unavailable) in Applied Chemistry, Xinjiang University, Urumqi, China (2007-2011)- (link unavailable) in Physical Chemistry, Dalian University of Technology, Dalian, China (2012-2015)- Ph.D. in Materials Science and Engineering, Xi’an Jiaotong University, Xi’an, China (2019-2023)

Experience 💼

– *Associate Professor*, College of Chemistry and Environmental Sciences, Kashgar University (January 2025 – Present)- *Lecturer*, College of Chemistry and Environmental Sciences, Kashgar University (October 2016 – December 2024)- *Assistant Lecturer*, College of Chemistry and Environmental Sciences, Kashgar University (September 2015 – October 2016)

Research Focus 🔍

Mamutjan Tursun’s research focuses on materials science, electrocatalytic reduction, and the development of efficient catalysts for various applications. His work explores the potential of transition metal dichalcogenides and single-atom catalysts for electrocatalytic reactions.

Awards and Honors 🏆

Although specific awards and honors are not mentioned in the provided information, Mamutjan Tursun’s publications in reputable journals demonstrate his research excellence.

 

Publication Top Notes

 

– 1. Boosting the Performance of Electrocatalytic NO Reduction to NH3 by Decorating WS2 with Single Transition Metal Atoms: A DFT Study ⚗️
– 2. Screening WS2-based single-atom catalysts for electrocatalytic nitrate reduction to ammonia 💧
– 3. Electrocatalytic Reduction of N2 to NH3 Over Defective 1T′-WX2 (X=S, Se, Te) Monolayers 🌟
– 4. Defective 1Tˊ-MoX2 (X = S, Se, Te) Monolayers for Electrocatalytic Ammonia Synthesis: Steric and Electronic Effects on the Catalytic Activity 🔩
– 5. Single Transition Metal Atoms Anchored on Defective MoS2 Monolayers for the Electrocatalytic Reduction of Nitric Oxide into Ammonia and Hydroxylamine 💡
– 6. Vacancy-triggered and dopant-assisted NO electrocatalytic reduction over MoS2 🔍
– 7. NO Electroreduction by Transition Metal Dichalcogenides with Chalcogen Vacancies 💻
– 8. N2O decomposition catalyzed by K+-doped Bi0.02Co ⚖️
– 9. Bi-Co3O4 catalyzing N2O decomposition with strong resistance to CO2 🌿
– 10. A Multifunctional Nanoplatform Based on Carbon Nanotubes Loaded with Persistent Luminescent Nanoparticles for Photocatalysis, Photothermal Therapy,and Drug Delivery Applications 💊
– 11. PdPt Alloy Nanoframes with Rugged Surfaces: Efficient Bifunctional Fuel Cell Catalysts in a Broad pH Range ⚡️
– 12. Surface property and activity of Pt/Nb2O5-ZrO2 for selective catalytic reduction of NO by H2 🌟
– 13. Pb0.04Co catalyst for N2O decomposition in presence of impurity gases 🌟

Conclusion

 

Mamutjan Tursun’s academic background, research experience, and teaching expertise make him a strong candidate for the Best Researcher Award. With some further development in publication record, citation impact, and international collaborations, he has the potential to excel in this award and make significant contributions to his field ¹ ².

Xiaoqing high | Analysis for Hydrology |Young Scientist Award

Prof. Xianfeng Li | All solid state lithium battery | Young Scientist Award

researcher at Dalian Institute of Chemical Physics, Chinese Academy of Sciences, China

A distinguished researcher in chemical engineering, specializing in energy storage and battery technologies, with extensive contributions to solid-state lithium batteries and lithium-sulfur systems. Currently a Researcher at the Dalian Institute of Chemical Physics (DICP), Chinese Academy of Sciences, they have authored over 100 high-impact papers with an H-index of 51 and 8,900+ citations. Recognized globally, they are part of the world’s top 2% of scientists (2022-2024).

Publication Profile

scopus

🎓 Education

🏅 2013-2018: Doctor of Engineering, Chemical Engineering, DICP, Chinese Academy of Sciences (Supervisor: Zhang Huamin) 2016-2018: Joint Ph.D. Trainee, University of Western Ontario (Mentor: Sun Xueliang)  2009-2013: Bachelor of Engineering, Anhui University (Supervisor: Zhou Hongping) – GPA 3.64/4.0, ranked 2/86

🧪 Experience

🔬 2022-Present: Researcher, DICP, Chinese Academy of Sciences 2021-2022: Associate Researcher, DICP 2018-2021: Postdoctoral Fellow, University of Western Ontario (Supervisor: Sun Xueliang  2013-2018: PhD Researcher, DICP  2016-2018: Joint PhD, University of Western Ontario

🏆 Awards and Honors

⭐ 2023: Outstanding Youth of Liaoning Province 2022: Special Talent Program, Chinese Academy of Sciences  2022: “Zhang Dayu” Young Scholar  2020: Mitacs Elevate Fellowship 2018: Yanchang Petroleum Outstanding Doctoral Scholarship  2017: National Scholarship  2017: “Lu Jiaxi” Outstanding Graduate Award

🔋 Research Focus

⚡ Solid-state lithium battery materials and device development  Lithium-sulfur batteries: cathode design, ion/electron transport Structural design for lithium dendrite inhibitio  Metal sulfide electrocatalysis for high-load batteries  High-voltage/high-power battery optimization

Publications 📖

1. 📝 Improved sodium storage performance via regulating surface oxygen containing functional groups and microstructure of lignin-derived hard carbon

Authors: Mirza, S., Han, J., Ying, G., Zheng, Q., Li, X.

Journal: Journal of Energy Storage, 2025, 107, 114969

Citations: 0

2. 🧪 Zinc-Ferricyanide Flow Batteries Operating Stably under −10 °C

Authors: Zhi, L., Liao, C., Xu, P., Yuan, Z., Li, X.

Journal: Angewandte Chemie International Edition, 2024, 63(51), e202412559

Citations: 1

3. 🔬 In Situ Molecular Reconfiguration of Pyrene Redox-Active Molecules for High-Performance Aqueous Organic Flow Batteries

Authors: Ge, G., Li, F., Yang, M., Zhang, C., Li, X.

Journal: Advanced Materials, 2024, 36(49), 2412197

Citations: 0

4. ⚡ Unveiling Intercalation Chemistry via Interference-Free Characterization Toward Advanced Aqueous Zinc/Vanadium Pentoxide Batteries

Authors: Li, X., Xu, Y., Chen, X., Li, X., Fu, Q.

Journal: Advanced Science, 2024, 11(40), 2405134

Citations: 1

5. 🌱 Air-stable naphthalene derivative-based electrolytes for sustainable aqueous flow batteries

Authors: Zhao, Z., Li, T., Zhang, C., Li, S., Li, X.

Journal: Nature Sustainability, 2024, 7(10), 1273–1282

Citations: 0

6. 🔋 Surface passivation of lithium nitride as pre-lithiation reagents to enhance its air-stability

Authors: Liu, C., Zhang, H., Li, T., Yang, X., Li, X.

Journal: Journal of Energy Storage, 2024, 99, 113256

Citations: 0

7. ⚙️ Bismuth Single Atoms Regulated Graphite Felt Electrode Boosting High Power Density Vanadium Flow Batteries

Authors: Xing, F., Fu, Q., Xing, F., Liu, T., Li, X.

Journal: Journal of the American Chemical Society, 2024, 146(38), 26024–26033

Citations: 0

8. 🧱 A sub-10 μm Ion Conducting Membrane with an Ultralow Area Resistance for a High-Power Density Vanadium Flow Battery

Authors: Shi, M., Lu, W., Li, X.

Journal: ACS Applied Energy Materials, 2024, 7(18), 7576–7583

Citations: 5

9. 🔧 SEI/dead Li-turning capacity loss for high-performance anode-free solid-state lithium batteries

Authors: Yin, Q., Li, T., Zhang, H., Yang, X., Li, X.

Journal: Journal of Energy Chemistry, 2024, 96, 145–152

Citations: 1

10. 🧩 Carbon Nanotube Network Induces Porous Deposited MnO2 for High-Areal Capacity Zn/Mn Batteries

Authors: Liu, Y., Xie, C., Li, X.

Journal: Small, 2024, 20(35), 2402026

Citations: 2

Conclusion

Prof. Xianfeng Li exemplifies the qualities sought in candidates for the Research for Young Scientist Award. His pioneering work, prolific publication record, and prestigious accolades demonstrate his readiness to receive this honor. With minor enhancements in global collaborations and industry engagement, his career trajectory is poised to achieve even greater scientific breakthroughs.