Jinxia Zhang | Defect detection | Best Researcher Award


Warning: Undefined variable $insensitive in /home/u792129758/domains/sciencefather.com/public_html/mechanics-conferences/wp-content/plugins/internal-link-building-plugin/internal_link_building.php on line 201

Warning: Undefined variable $insensitive in /home/u792129758/domains/sciencefather.com/public_html/mechanics-conferences/wp-content/plugins/internal-link-building-plugin/internal_link_building.php on line 202

Assoc Prof Dr. Jinxia Zhang | Defect detection | Best Researcher Award

Ā Associate Professor at Southeast University, China

Assoc Prof Dr. Jinxia Zhang is an Associate Professor at Southeast University, Nanjing, China, specializing in saliency detection, visual attention, computer vision, and deep learning. With a Ph.D. in Pattern Recognition and Intelligent Systems from Nanjing University of Science and Technology, he has extensive experience in artificial intelligence research. His journey includes time as a visiting scholar at Harvard Medical School and numerous prestigious research projects funded by national foundations. Assoc Prof Dr. Jinxia Zhang leads key AI initiatives, driving innovations in multimodal understanding, defect analysis, and object detection. His academic and professional contributions have positioned him as a prominent researcher in visual computing and AI.

Publication Profile

scholar

Education šŸŽ“

Assoc Prof Dr. Jinxia ZhangĀ  earned his M.Sc. and Ph.D. in Pattern Recognition and Intelligent Systems from Nanjing University of Science and Technology in 2015. His doctoral research laid a foundation for his interest in artificial intelligence, particularly in areas like visual attention and computer vision. Prior to his postgraduate work, he completed his B.Sc. in Computer Science and Technology at the same institution in 2009, where he developed a solid understanding of computational theories and applications. His education has provided him with both theoretical knowledge and practical skills that are central to his current research on AI and deep learning.Assoc Prof Dr. Jinxia ZhangĀ  is currently an Associate Professor at Southeast University, Nanjing, a role he has held since 2019. From 2016 to 2019, he served as a Lecturer at the same university, where he significantly contributed to AI teaching and research. His early career included a prestigious stint as a Visiting Scholar at Harvard Medical School, USA, between 2012 and 2014, where he collaborated on cutting-edge AI-driven healthcare projects. His international exposure and academic roles have enriched his teaching and research, particularly in computer vision and AI, making him a key figure in the field.

Awards and HonorsĀ  šŸ†

Assoc Prof Dr. Jinxia ZhangĀ  has received numerous accolades for his research excellence and contributions to the field of AI. He was awarded the National Natural Science Foundation of China grant in 2018 for his project on salient object detection. In 2017, he secured the Jiangsu Natural Science Foundation Grant for his innovative research on visual cognitive characteristics. Additionally, his work in defect diagnosis for photovoltaic modules was recognized as part of the National Key Research and Development Plan. These prestigious awards underscore his pioneering contributions in artificial intelligence and computer vision research.

Research FocusĀ  šŸ”¬

Assoc Prof Dr. Jinxia Zhang ‘s research focuses on the intersection of visual attention, saliency detection, and deep learning within artificial intelligence. He leads projects on multimodal understanding and e-commerce applications, and is a Principal Investigator for research into AI-based fruit and vegetable recognition. His earlier work in defect diagnosis for photovoltaic modules and salient object detection in complex scenes has been supported by prominent grants. His innovative approach combines perceptual grouping and visual attention to develop cutting-edge solutions in computer vision, making significant advancements in how machines perceive and interact with visual data.

Conclusion

The candidate demonstrates an impressive body of work across several domains of artificial intelligence, particularly in salient object detection, visual cognition, and multimodal learning. Their academic achievements, project leadership, and dedication to advancing AI make them a strong contender for the Best Researcher Award. By continuing to broaden their industry collaborations and expanding the scope of their research impact, they can become a globally recognized leader in AI and computer vision.

PublicationĀ  Top Notes

  • Towards the Quantitative Evaluation of Visual Attention Models (2015)
    • Citation: 75
    • Journal: Vision Research
    • Key Contributors: Z. Bylinskii, E.M. DeGennaro, R. Rajalingham, H. Ruda, J. Zhang, J.K. Tsotsos
    • Highlights: Focuses on quantitative approaches to evaluate visual attention models, essential for improving saliency detection.
  • A Novel Graph-Based Optimization Framework for Salient Object Detection (2017)
    • Citation: 63
    • Journal: Pattern Recognition
    • Key Contributors: J. Zhang, K.A. Ehinger, H. Wei, K. Zhang, J. Yang
    • Highlights: Presents a new graph-based optimization method for enhancing the accuracy of salient object detection.
  • Salient Object Detection by Fusing Local and Global Contexts (2020)
    • Citation: 60
    • Journal: IEEE Transactions on Multimedia
    • Key Contributors: Q. Ren, S. Lu, J. Zhang, R. Hu
    • Highlights: This paper integrates both local and global visual contexts to refine salient object detection in multimedia applications.
  • Inter-Hour Direct Normal Irradiance Forecast with Multiple Data Types and Time-Series (2019)
    • Citation: 36
    • Journal: Journal of Modern Power Systems and Clean Energy
    • Key Contributors: T. Zhu, H. Zhou, H. Wei, X. Zhao, K. Zhang, J. Zhang
    • Highlights: Introduces a time-series forecasting model for direct normal irradiance, benefiting renewable energy systems.
  • Winter is Coming: How Humans Forage in a Temporally Structured Environment (2015)
    • Citation: 35
    • Journal: Journal of Vision
    • Key Contributors: D. Fougnie, S.M. Cormiea, J. Zhang, G.A. Alvarez, J.M. Wolfe
    • Highlights: Examines human visual foraging behavior in dynamically changing environments.
  • Domain Adaptation for Epileptic EEG Classification Using Adversarial Learning and Riemannian Manifold (2022)
    • Citation: 25
    • Journal: Biomedical Signal Processing and Control
    • Key Contributors: P. Peng, L. Xie, K. Zhang, J. Zhang, L. Yang, H. Wei
    • Highlights: This paper explores domain adaptation techniques to improve epileptic EEG classification through adversarial learning.
  • A Lightweight Network for Photovoltaic Cell Defect Detection in Electroluminescence Images (2024)
    • Citation: 23
    • Journal: Applied Energy
    • Key Contributors: J. Zhang, X. Chen, H. Wei, K. Zhang
    • Highlights: Develops a lightweight neural network for detecting defects in photovoltaic cells using knowledge distillation.
  • Salient Object Detection via Deformed Smoothness Constraint (2018)
    • Citation: 21
    • Journal: IEEE International Conference on Image Processing (ICIP)
    • Key Contributors: X. Wu, X. Ma, J. Zhang, A. Wang, Z. Jin
    • Highlights: Proposes a deformed smoothness constraint approach for improving salient object detection.
  • Character Recognition via a Compact Convolutional Neural Network (2017)
    • Citation: 20
    • Conference: International Conference on Digital Image Computing
    • Key Contributors: H. Zhao, Y. Hu, J. Zhang
    • Highlights: Develops a compact CNN for robust character recognition in natural scene images.
  • A Prior-Based Graph for Salient Object Detection (2014)
    • Citation: 23
    • Conference: IEEE International Conference on Image Processing (ICIP)
    • Key Contributors: J. Zhang, K.A. Ehinger, J. Ding, J. Yang
    • Highlights: Uses a prior-based graph model to enhance the performance of salient object detection algorithms.

Hasi Rani Barai | Nanocomposite materials | Best Researcher Award


Warning: Undefined variable $insensitive in /home/u792129758/domains/sciencefather.com/public_html/mechanics-conferences/wp-content/plugins/internal-link-building-plugin/internal_link_building.php on line 201

Warning: Undefined variable $insensitive in /home/u792129758/domains/sciencefather.com/public_html/mechanics-conferences/wp-content/plugins/internal-link-building-plugin/internal_link_building.php on line 202

Assist Prof Dr. Hasi Rani Barai | Nanocomposite materials | Best Researcher Award

Assistant Professor at Yeungnam University, South Korea

Dr. Hasi Rani Barai is an accomplished Assistant Professor at Yeungnam University, Republic of Korea, specializing in materials science and nanotechnology. She completed her postdoctoral research in artificial photosynthesis at Sogang University and nanomaterials at Ewha Womans University. Dr. Barai has earned global recognition for her innovative work in energy storage devices and nanocomposite materials. She holds a Ph.D. from Inha University and has published extensively in high-impact journals. Her career is marked by a deep commitment to advancing materials engineering and green energy solutions.

Publication Profile

Education šŸŽ“

Ph.D. (2010ā€“2013): Inha University, South Korea, under Prof. H.W. Lee ā€“ Research in physical organic mechanisms, nanomaterials, and high-energy materials. M.S. (2006ā€“2008): University of Dhaka, Bangladesh, under Prof. M. Muhibur Rahman ā€“ Specialized in laser spectroscopy and physical chemistry. B.Sc. (2000ā€“2006): University of Dhaka, Bangladesh, under Prof. M. Muhibur Rahman ā€“ Studied chemistry with a focus on nanomaterials and spectroscopy.

Experience šŸ”¬Ā 

Assistant Professor (2015ā€“present): Yeungnam University, South Korea ā€“ Leading research in nanocomposites, energy storage, and biosensors Postdoctoral Fellow (2013ā€“2015): Sogang University, South Korea ā€“ Focused on artificial photosynthesis and nanocatalysts for CO2 reduction. Postdoctoral Fellow (2013): Ewha Womans University, South Korea ā€“ Researched nanoparticles for energy storage. Research Fellow: Expert in supercapacitors, electrochemistry, and MOFs.

Awards and Honors šŸ…

KCAP Fellowship: Awarded for outstanding research in artificial photosynthesis and nanomaterials at Sogang University. Best Paper Award: Recognition for top-tier research publications in energy storage systems. International Research Grants: Secured multiple research grants to advance the field of nanotechnology and green energy. Young Scientist Award: Honored for innovative contributions in the field of materials science and energy devices.

Research Focus šŸ”Ā 

Materials Science & Engineering: Specializes in nanocomposites, supercapacitors, and biosensors. Electrochemistry & Energy Storage: Focus on supercapacitors, nanoparticles, and energy storage devices for sustainable technologies. Nanotechnology & Catalysis: Research in nanocatalysts, MOFs, and CO2 reduction for artificial photosynthesis. Green Energy: Leading innovations in renewable energy solutions using nanomaterials and advanced electrochemistry.

PublicationĀ  Top Notes

High-Performance Battery-Type Supercapacitors: Investigated the growth of nanorods/nanospheres on conductive frameworks for energy storage. ACS Applied Materials & Interfaces, July 2024. DOI: 10.1021/acsami.4c03109

Detection of Polymorphisms in FASN, DGAT1, and PPARGC1A Genes: Analyzed gene associations with milk yield and composition traits in river buffalo. Animals, June 2024. DOI: 10.3390/ani14131945

Conductive Gels for Energy Storage and Conversion: Studied design strategies for materials used in energy applications. Materials, May 2024. DOI: 10.3390/ma17102268

Antibiotic Resistance in Plant Pathogenic Bacteria: Discussed environmental impacts and biocontrol agents. Plants, April 2024. DOI: 10.3390/plants13081135

pH-Sensitive Hydrogel Membrane for Dye Water Purification: Developed sodium alginate/poly(vinyl alcohol) hydrogel for environmental applications. ACS ES&T Water, February 2024. DOI: 10.1021/acsestwater.3c00567

 

Conclusion

Dr. Hasi Rani Barai is highly suitable for the Best Researcher Award due to her remarkable achievements in the fields of nanocomposite materials, energy storage, and artificial photosynthesis. Her extensive academic and research career reflects excellence in innovative materials science, positioning her as a leading researcher in cutting-edge technologies that address global challenges. By fostering international collaborations and emphasizing applied research, Dr. Baraiā€™s already stellar portfolio could reach even greater heights, making her a deserving candidate for this award.

Shiquan Lin | liquid-solid contact electrification | Best Researcher Award


Warning: Undefined variable $insensitive in /home/u792129758/domains/sciencefather.com/public_html/mechanics-conferences/wp-content/plugins/internal-link-building-plugin/internal_link_building.php on line 201

Warning: Undefined variable $insensitive in /home/u792129758/domains/sciencefather.com/public_html/mechanics-conferences/wp-content/plugins/internal-link-building-plugin/internal_link_building.php on line 202

Assoc Prof Dr. Shiquan Lin | liquid-solid contact electrification | Best Researcher Award

Professor at NBeijing Institute of Technology,Ā  china

Assoc Prof Dr. Shiquan Lin, an Associate Research Fellow at the Beijing Institute of Nanoenergy and Nanosystems, CAS, is a distinguished researcher in contact electrification, triboelectric sensors, and nanoenergy devices. With over 30 papers published in high-impact journals and citations exceeding 3,000, he is making significant contributions to the fields of nanotechnology and energy harvesting. He earned his Ph.D. from Tsinghua University and completed postdoctoral research at the National Center for Nanoscience and Technology, China. His research focuses on designing sensors and devices using contact electrification principles for advanced applications.

Publication Profile

Scholar

Education šŸŽ“

Ph.D. in Mechanical Engineering from Tsinghua University (2013.09ā€“2018.07). During his doctoral studies, Assoc Prof Dr. Shiquan Lin focused on advanced mechanical systems, tribology, and nanotechnology, publishing research in top journals and developing expertise in contact electrification and smart sensing technologies. B.S. in Mechanical Engineering from the University of Science and Technology Beijing (2009.09ā€“2013.07). His undergraduate experience laid the groundwork for his passion in engineering mechanics and materials science, sparking an interest in nanotechnology and energy devices that led to his graduate research.

ExperiencešŸ’¼Ā 

Associate Research Fellow at the Beijing Institute of Nanoenergy and Nanosystems, CAS (2020.10ā€“present): Assoc Prof Dr. Shiquan Linleads research in contact electrification, smart sensors, and micro-actuators, contributing to groundbreaking technologies in nanoenergy. Postdoctoral Researcher at the National Center for Nanoscience and Technology, China (2018.07ā€“2020.10): Assoc Prof Dr. Shiquan Lin deepened his research into triboelectric nanogenerators and semiconductor interfaces, publishing extensively and collaborating on advanced projects. Guest editor and young editorial board member of prestigious journals such as Friction and China Surface Engineering, contributing to the academic community.

Awards and HonorsšŸ†

National Natural Science Foundation of China Grant No. 52375213 (2024.01ā€“2027.12) National Natural Science Foundation of China Grant No. 52005044 (2021.01ā€“2023.12) Ā Tribology Science Fund of the State Key Laboratory of Tribology in Advanced Equipment: No. SKLTKF23A02 (2024.01ā€“2026.12) Recognized as a young editorial board member for Friction and China Surface Engineering, showcasing his leadership in the field of tribology and surface engineering.

Research FocusšŸ”¬

Assoc Prof Dr. Shiquan Lin specializes in the study of contact electrification and its applications in smart sensors and nanoenergy. His research explores charge transfer at solid-solid, liquid-solid, and semiconductor interfaces, with a focus on high-voltage, highly sensitive devices. He designs micro-actuators and liquid component analysis devices based on contact electrification principles, contributing to innovations in triboelectric nanogenerators and energy harvesting systems. His work has been published in leading journals, advancing the field of nanoscience

PublicationĀ  Top Notes

  • Quantifying electron-transfer in liquid-solid contact electrification and the formation of electric double-layer
    S. Lin, L. Xu, A. Chi Wang, Z.L. Wang, Nature Communications, 11 (1), 399 ā€“ 445 citations, 2020
  • Probing contactā€electrificationā€induced electron and ion transfers at a liquidā€“solid interface
    J. Nie, Z. Ren, L. Xu, S. Lin, F. Zhan, X. Chen, Z.L. Wang, Advanced Materials, 32 (2), 1905696 ā€“ 411 citations, 2020
  • Contact electrification at the liquidā€“solid interface
    S. Lin, X. Chen, Z.L. Wang, Chemical Reviews, 122 (5), 5209-5232 ā€“ 331 citations, 2021
  • Contributions of different functional groups to contact electrification of polymers
    S. Li, J. Nie, Y. Shi, X. Tao, F. Wang, J. Tian, S. Lin, X. Chen, Z.L. Wang, Advanced Materials, 32 (25), 2001307 ā€“ 280 citations, 2020
  • Electron transfer in nanoscale contact electrification: effect of temperature in the metalā€“dielectric case
    S. Lin, L. Xu, C. Xu, X. Chen, A.C. Wang, B. Zhang, P. Lin, Y. Yang, H. Zhao, Advanced Materials, 31 (17), 1808197 ā€“ 237 citations, 2019
  • Electron transfer as a liquid droplet contacting a polymer surface
    F. Zhan, A.C. Wang, L. Xu, S. Lin, J. Shao, X. Chen, Z.L. Wang, ACS Nano, 14 (12), 17565-17573 ā€“ 188 citations, 2020
  • Charge pumping strategy for rotation and sliding type triboelectric nanogenerators
    Y. Bai, L. Xu, S. Lin, J. Luo, H. Qin, K. Han, Z.L. Wang, Advanced Energy Materials, 10 (21), 2000605 ā€“ 148 citations, 2020
  • The tribovoltaic effect and electron transfer at a liquid-semiconductor interface
    S. Lin, X. Chen, Z.L. Wang, Nano Energy, 76, 105070 ā€“ 123 citations, 2020
  • Electron transfer in nanoscale contact electrification: photon excitation effect
    S. Lin, L. Xu, L. Zhu, X. Chen, Z.L. Wang, Advanced Materials, 31 (27), 1901418 ā€“ 121 citations, 2019
  • Scanning probing of the tribovoltaic effect at the sliding interface of two semiconductors
    M. Zheng, S. Lin, L. Xu, L. Zhu, Z.L. Wang, Advanced Materials, 32 (21), 2000928 ā€“ 110 citations, 2020
  • Effects of surface functional groups on electron transfer at liquidā€“solid interfacial contact electrification
    S. Lin, M. Zheng, J. Luo, Z.L. Wang, ACS Nano, 14 (8), 10733-10741 ā€“ 107 citations, 2020
  • Triboelectric nanogenerator as a probe for measuring the charge transfer between liquid and solid surfaces
    J. Zhang, S. Lin, M. Zheng, Z.L. Wang, ACS Nano, 15 (9), 14830-14837 ā€“ 88 citations, 2021
  • Photovoltaic effect and tribovoltaic effect at liquid-semiconductor interface
    M. Zheng, S. Lin, Z. Tang, Y. Feng, Z.L. Wang, Nano Energy, 83, 105810 ā€“ 86 citations, 2021
  • Environmental energy harvesting adapting to different weather conditions and self-powered vapor sensor based on humidity-responsive triboelectric nanogenerators
    Z. Ren, Y. Ding, J. Nie, F. Wang, L. Xu, S. Lin, X. Chen, Z.L. Wang, ACS Applied Materials & Interfaces, 11 (6), 6143-6153 ā€“ 85 citations, 2019
  • Piezo-phototronic Effect Enhanced Photodetector Based on CH3NH3PbI3 Single Crystals
    Q. Lai, L. Zhu, Y. Pang, L. Xu, J. Chen, Z. Ren, J. Luo, L. Wang, L. Chen, K. Han, ACS Nano, 12 (10), 10501-10508 ā€“ 79 citations, 2018
  • The overlapped electronā€cloud model for electron transfer in contact electrification
    S. Lin, C. Xu, L. Xu, Z.L. Wang, Advanced Functional Materials, 30 (11), 1909724 ā€“ 77 citations, 2020
  • A droplet-based electricity generator for large-scale raindrop energy harvesting
    Z. Li, D. Yang, Z. Zhang, S. Lin, B. Cao, L. Wang, Z.L. Wang, F. Yin, Nano Energy, 100, 107443 ā€“ 66 citations, 2022
  • Quantifying contactā€electrification induced charge transfer on a liquid droplet after contacting with a liquid or solid
    Z. Tang, S. Lin, Z.L. Wang, Advanced Materials, 33 (42), 2102886 ā€“ 58 citations, 2021
  • Bipolar charge transfer induced by water: experimental and first-principles studies
    S. Lin, T. Shao, Physical Chemistry Chemical Physics, 19 (43), 29418-29423 ā€“ 47 citations, 2017
  • Triboelectric nanogenerator array as a probe for in situ dynamic mapping of interface charge transfer at a liquidā€“solid contacting
    J. Zhang, S. Lin, Z.L. Wang, ACS Nano, 17 (2), 1646-1652 ā€“ 45 citations, 2023

Conclusion

Overall, this candidate demonstrates excellence in research, publication, and academic leadership. Their contributions to contact electrification and nanotechnology are impactful, and their work has gained significant attention in the scientific community. By enhancing their international collaborations and expanding the practical applications of their research, they could further solidify their status as a top candidate for the Best Researcher Award. Their strong funding track record, combined with their editorial roles, makes them a highly competitive nominee for this prestigious recognition.

Bernd Bachert | Korrosionsschutz | Best Researcher Award


Warning: Undefined variable $insensitive in /home/u792129758/domains/sciencefather.com/public_html/mechanics-conferences/wp-content/plugins/internal-link-building-plugin/internal_link_building.php on line 201

Warning: Undefined variable $insensitive in /home/u792129758/domains/sciencefather.com/public_html/mechanics-conferences/wp-content/plugins/internal-link-building-plugin/internal_link_building.php on line 202
Dr.Ā  DHBW Mosbach, Germany

With a robust academic background in Mechanical Engineering, including a Doctorate from Darmstadt University of Technology, this individual has amassed extensive experience in academia and industry. They have served as a professor, dean, and director across various institutions, playing a pivotal role in developing and accrediting numerous engineering study programs. Their expertise extends to fluid mechanics, thermodynamics, and materials science. They also lead research in mechanical engineering and renewable energy, contributing significantly to education and innovation. As CEO of IRATEC GmbH, they combine academic rigor with practical industry insights, making them a highly accomplished professional in their field.

Professional Profiles:

Education šŸŽ“

February 1982 – June 1987: Secondary School NeckargemĆ¼nd Qualification: GCSE August 1987 – February 1991: Training at Eltro GmbH, Heidelberg
Qualification: Precision Mechanic August 1991 – June 1992: Johannes-Gutenberg-Schule, Heidelberg Qualification: Technical Diploma (Fachhochschulreife) September 1992 – January 1997: University of Applied Sciences Mannheim, Faculty of Mechanical Engineering Qualification: Graduate Engineer in Mechanical Engineering (FH) October 1997 – April 2000: Darmstadt University of Technology, Faculty of Mechanical Engineering Qualification: Graduate Engineer in Mechanical Engineering June 2000 – December 2003: Doctoral Thesis at Darmstadt University of Technology, Faculty of Mechanical Engineering Qualification: Doctor of Mechanical Engineering (Dr.-Ing.)

Work Experience šŸ’¼

February 1991 – August 1991: Wolfgang Bortz Zerspanungstechnik GmbH Function: Programming of CNC Machines January 1997 – June 1999: Assistant Professor at BFZ NĆ¼rnberg January 1997 – December 1997: KDK Kalibrierdienst Kopp GmbH (Calibration Service) Function: Handling of problems in quality assurance and quality management October 1997 – April 2000: Assistant Professor at Abendakademie Mannheim and DaimlerChrysler Training Center Mannheim Lecture: Fluid Mechanics

Evaluation of the Candidate for the Best Researcher Award

Strengths:

  1. Extensive Academic Background:
    • The candidate has a solid educational foundation in mechanical engineering, with qualifications ranging from a Technical Diploma to a Doctorate in Mechanical Engineering (Dr.-Ing.). This extensive academic background supports their credibility and expertise in the field.
  2. Diverse Work Experience:
    • The candidate has a wealth of experience across various roles, including positions as an assistant professor, director, professor, and head of departments. Their roles have spanned multiple institutions and responsibilities, indicating a strong capacity for leadership and innovation in both academia and industry.
  3. Leadership and Management Skills:
    • The candidate has held significant leadership positions, such as Director of the Heidelberg Institute for Applied Research and Development, Professor and Dean at SRH University, and Head of Mechanical Engineering at DHBW Mosbach. These roles highlight their ability to lead and manage academic and research initiatives effectively.
  4. Contributions to Education:
    • The candidate has been instrumental in developing and accrediting various study programs, including Bachelor’s and Master’s degrees in Mechanical Engineering and Industrial Engineering. Their work in creating didactical training and education programs for national and international partners showcases their dedication to advancing education in engineering.
  5. Research Contributions:
    • The candidate has engaged in several research projects in areas such as Mechanical Engineering, Water Power Engineering, and Dual Education. Their authorship of various scientific publications further underscores their contributions to research and knowledge dissemination.
  6. International Experience and Collaboration:
    • As the Head of the International Office at DHBW Mosbach, the candidate has demonstrated a commitment to fostering international collaborations and expanding the global reach of their institution.
  7. Industry Engagement:
    • The candidate’s part-time role as CEO of IRATEC GmbH, coupled with their experience in consulting and renewable energy engineering, illustrates a strong connection between their academic work and practical, real-world applications.

Areas for Improvement:

  1. Focused Research Output:
    • While the candidate has a broad range of experience, a more focused research output in a specific area of mechanical engineering might strengthen their candidacy for a Best Researcher Award. Concentrating on one niche could lead to more impactful publications and a stronger reputation in that domain.
  2. Innovation and Patents:
    • The candidate’s profile could be further enhanced by showcasing any patents or innovative technologies they may have developed. Highlighting these achievements would emphasize their contributions to the advancement of mechanical engineering.
  3. Recent Research Activity:
    • Emphasizing more recent and cutting-edge research activities would demonstrate continued relevance and engagement with current trends in mechanical engineering. If recent high-impact publications or projects are not prominent, focusing on these could be beneficial.

 

āœļøPublications Top Note :

Time-dependent measurements of cavitation damage
Authors: Osterman, A., Bachert, B., Sirok, B., Dular, M.
Journal: Wear, 2009, 266(9-10), pp. 945ā€“951
Citations: 29

Comparison of different methods for the evaluation of cavitation damaged surfaces
Authors: Bachert, B., Ludwig, G., Stoffel, B., Baumgarten, S.
Conference: Proceedings of the American Society of Mechanical Engineers Fluids Engineering Division Summer Conference, 2005, 2, pp. 553ā€“560, FEDSM2005-77368
Citations: 1

Comparison of different methods for the evaluation of cavitation damaged surfaces
Authors: Bachert, B., Stoffel, B., Ludwig, G., Baumgarten, S.
Conference: Proceedings of 2005 ASME Fluids Engineering Division Summer Meeting, FEDSM2005, 2005, pp. 2111ā€“2118
Citations: 7

Relationship between cavitation structures and cavitation damage
Authors: Dular, M., Bachert, B., Stoffel, B., Å irok, B.
Journal: Wear, 2004, 257(11), pp. 1176ā€“1184
Citations: 249

Experimental investigations concerning erosive aggressiveness of cavitation at different test configurations
Authors: Bachert, B., Dular, M., Baumgarten, S., Ludwig, G., Stoffel, B.
Conference: Proceedings of the ASME Heat Transfer/Fluids Engineering Summer Conference 2004, HT/FED 2004, 3, pp. 733ā€“743, HT-FED04-56597
Citations: 5

Experimental investigations concerning influences on cavitation inception at an axial test pump
Authors: Bachert, B., Brunn, B., Stoffel, B.
Conference: Proceedings of the ASME/JSME Joint Fluids Engineering Conference, 2003, 2 A, pp. 249ā€“256
Citations: 5

The influence of cavitation structures on the erosion of a symmetrical hydrofoil in a cavitation tunnel
Authors: Å irok, B., Dular, M., Novak, M., Ludwig, G., Bachert, B.
Journal: Strojniski Vestnik/Journal of Mechanical Engineering, 2002, 48(7), pp. 368ā€“378
Citations: 13

Conclusion:

The candidate is a strong contender for the Best Researcher Award due to their extensive academic qualifications, leadership experience, and contributions to education and research. Their background in mechanical engineering is complemented by significant roles in academia and industry, making them a well-rounded and influential figure in the field. To enhance their candidacy, they could focus on a more specialized area of research, highlight any innovative contributions, and ensure their recent research activities are at the forefront of their application.

Zhenghui Luo | organic solar cells | Best Researcher Award


Warning: Undefined variable $insensitive in /home/u792129758/domains/sciencefather.com/public_html/mechanics-conferences/wp-content/plugins/internal-link-building-plugin/internal_link_building.php on line 201

Warning: Undefined variable $insensitive in /home/u792129758/domains/sciencefather.com/public_html/mechanics-conferences/wp-content/plugins/internal-link-building-plugin/internal_link_building.php on line 202
Assoc Prof Dr. Shenzhen University, China

Dr. Luo Zhenghui, born in October 1991 in Wuhan, Hubei Province, is an Associate Professor at Shenzhen University, specializing in organic optoelectronic functional materials. He completed his PhD in Organic Chemistry at Wuhan University under the supervision of Professor Yang Chuluo, with joint training at the Institute of Chemistry, Chinese Academy of Sciences. Dr. Luo has published over 100 SCI papers, with 26 recognized as ESI Highly Cited Papers. His research focuses on the design and synthesis of non-fullerene acceptor materials and organic photovoltaic devices. He has received multiple awards, including recognition as a Clarivate Analytics Highly Cited Scientist.

 

Professional Profiles:

Education:

PhD in Organic Optoelectronic Functional Materials, Wuhan UniversitySupervisor: Professor Yang ChuluoJoint Training: Institute of Chemistry, Chinese Academy of Sciences (Academician Li Yongfang)Research Direction: Design, synthesis, and photovoltaic device research of non-fullerene acceptor materials

Research Focus:

Organic photovoltaic materials and devicesPreparation and optimization of organic photovoltaic devicesDesign and synthesis of non-fullerene acceptor materials

Key Achievements:

Published over 100 SCI papers since May 2016.26 papers selected as ESI Highly Cited Papers and 26 as ESI Hot Topics.Total citations exceed 8,000 (H-index: 51 on Google Scholar).First author or corresponding author on 54 papers, including top journals like Joule, Advanced Materials, Angewandte Chemie International Edition, and Energy & Environmental Science.Awarded for outstanding research contributions, including the 2020 Cell Press Chinese Scientist Best Paper Award in Material Science and selection as a Clarivate Analytics Highly Cited Scientist for multiple years.

Awards:

Top 2% of the world’s top scientists in Environment, Energy, and Sustainability journals for three consecutive years (2021-2023).Second prize winner in Guangdong Province and Shenzhen City Natural Science Award in 2022.

Strengths for the Award

1. Exceptional Publication Record: Luo Zhenghui has published over 100 SCI papers since May 2016, with 26 being selected as ESI Highly Cited Papers and 26 as ESI Hot Topics. His research output demonstrates both quality and impact, with a Google Scholar H-index of 51 and over 8,000 citations. His work in high-impact journals such as Advanced Materials, Angewandte Chemie, Joule, and Nature Communications underscores his contributions to the field of organic optoelectronic functional materials.

2. Expertise in Organic Photovoltaic Materials: Luo’s research focuses on organic photovoltaic materials and devices, particularly the design, synthesis, and application of non-fullerene acceptor materials. His innovative work in this area has led to significant advancements, including the development of polymer solar cells with efficiencies exceeding 17%. His expertise in molecular design and device engineering is evident in his numerous high-impact publications.

3. Recognition and Awards: Luo has received several prestigious awards, including the Cell Press Chinese Scientist Best Paper Award (First Place in Material Science) and the Outstanding Paper Award from Science China Chemistry. His recognition as a Clarivate Analytics Highly Cited Scientist and inclusion in the top 2% of the world’s top scientists further solidifies his standing in the scientific community.

4. Collaborative and Interdisciplinary Research: Luo has successfully collaborated with leading researchers and institutions, including joint training with the Institute of Chemistry, Chinese Academy of Sciences, and research at the Hong Kong University of Science and Technology. His interdisciplinary approach has contributed to his success in advancing organic optoelectronics and photovoltaic research.

Areas for Improvement

1. Diversification of Research Focus: While Luo’s focus on organic photovoltaic materials has yielded significant results, diversifying his research portfolio could enhance his contributions to other emerging areas within organic optoelectronics. Expanding into related fields such as organic light-emitting diodes (OLEDs) or organic semiconductors could further strengthen his overall research impact.

2. Increased Industry Collaboration: To translate his research into practical applications, Luo could benefit from increased collaboration with industry partners. Engaging in technology transfer and commercialization efforts could amplify the societal impact of his research, particularly in the development and deployment of organic photovoltaic technologies.

3. Outreach and Mentorship: Luo could consider increasing his involvement in outreach and mentorship activities. Guiding the next generation of researchers and actively participating in scientific outreach could enhance his visibility and influence within the broader scientific community.

 

āœļøPublications Top Note :

Fine-tuning energy levels via asymmetric end groups – This paper reports on polymer solar cells achieving efficiencies over 17% through the fine-tuning of energy levels using asymmetric end groups. Published in Joule in 2020, it has been cited 367 times.

Improving open-circuit voltage by a chlorinated polymer donor – This study demonstrates how a chlorinated polymer donor can improve the efficiency of binary organic solar cells to over 17%. Published in Science China Chemistry in 2020, with 328 citations.

A layer-by-layer architecture for printable organic solar cells – This research addresses the challenge of module efficiency in organic solar cells by using a layer-by-layer architecture. It was published in Joule in 2020 and has 317 citations.

Precisely controlling the position of bromine on the end group – This work explores how the precise positioning of bromine on polymer acceptors can lead to solar cells with efficiencies over 15%. It was published in Advanced Materials in 2020 and has been cited 311 times.

Fine-tuning molecular packing and energy level through methyl substitution – This paper focuses on methyl substitution for fine-tuning molecular packing, leading to efficient nonfullerene polymer solar cells. Published in Advanced Materials in 2018, it has 292 citations.

Use of two structurally similar small molecular acceptors – The study shows how using two structurally similar acceptors can enable high-efficiency ternary organic solar cells. Published in Energy & Environmental Science in 2018, it has 280 citations.

Asymmetrical ladder-type donor-induced polar small molecule acceptor – This research promotes fill factors approaching 77% in high-performance nonfullerene polymer solar cells. Published in Advanced Materials in 2018, it has 273 citations.

16% efficiency all-polymer organic solar cells – The paper reports on achieving a 16% efficiency in all-polymer organic solar cells via a finely tuned morphology. Published in Joule in 2021, with 243 citations.

Simultaneous enhanced efficiency and thermal stability – This work demonstrates enhanced efficiency and thermal stability in organic solar cells using a polymer acceptor additive. Published in Nature Communications in 2020, it has 239 citations.

A nonfullerene acceptor with a 1000 nm absorption edge – This study discusses the development of a nonfullerene acceptor leading to improved efficiencies in organic solar cells. Published in Energy & Environmental Science in 2019, with 229 citations.

Conclusion

Luo Zhenghui is an outstanding candidate for the Best Researcher Award, with a proven track record of high-impact research, numerous accolades, and significant contributions to the field of organic optoelectronic functional materials. His expertise in organic photovoltaic materials, coupled with his collaborative and interdisciplinary approach, positions him as a leader in his field. While there is potential for further growth in diversifying his research focus and increasing industry collaboration, Luo’s achievements to date make him a highly deserving recipient of this prestigious award.

Dhanraj Shinde | Microbial fuel cells | Best Researcher Award


Warning: Undefined variable $insensitive in /home/u792129758/domains/sciencefather.com/public_html/mechanics-conferences/wp-content/plugins/internal-link-building-plugin/internal_link_building.php on line 201

Warning: Undefined variable $insensitive in /home/u792129758/domains/sciencefather.com/public_html/mechanics-conferences/wp-content/plugins/internal-link-building-plugin/internal_link_building.php on line 202

Dr. Dhanraj Shinde | Microbial fuel cells | Best Researcher Award

Dr. National Chemical Laboratory, Pune, Maharastra, India

Dr. Dhanraj B. Shinde, with over 15 years of research experience, is a Ramalingaswami fellow and Assistant Professor at the National Chemical Laboratory, India. He specializes in nanomaterials synthesis, proton conductive membranes, chemical vapor deposition, and energy storage devices. He has held postdoctoral positions at New Mexico State University, USA, and Monash University, Australia, contributing significantly to graphene production and microbial fuel cells. Dr. Shinde earned his Ph.D. in Physical and Materials Chemistry from the University of Pune, India. His numerous accolades include the Ramanujan Fellowship and the Australian Alumni Research Grant.

 

Professional Profiles:

EducationšŸŽ“

Ph.D. in Physical and Materials ChemistryNational Chemical Laboratory (NCL), University of Pune, India (2008 – 2013)Thesis: ā€œElectrochemical Synthesis and Functionalization of Carbon-based Nanomaterialsā€Supervisor: Dr. K. Vijayamohanan, IISER Tirupati, IndiašŸŽ“ M.Sc. in ChemistryYeshwant College, Department of Chemistry, Swami Ramanand Teerth Marathwada University Nanded, Maharashtra, India (May 2006)šŸŽ“ B.Sc. in ChemistryMahatma Gandhi College, Ahmedpur, Swami Ramanand Teerth Marathwada University, Nanded, Maharashtra, India (May 2004)

Fellowships and Awards

šŸ… Fellowships:

Senior Research Fellowship, CSIR, New Delhi (January 2010 to December 2012)Junior Research Fellowship, CSIR, New Delhi (January 2008 to December 2009)Ramanujan Fellowship, SERB (2021)Ramalingaswami Re-entry Fellowship, DBT (2021)

šŸ† Awards:

KRISHNAN AWARD for Best Published Research Paper in Physical Chemistry / Materials Science (2011 & 2013)Best Thesis Award ā€œKEERTHI SANGORAM MEMORIAL ENDOWMENT AWARDā€ (2012)Young Associate Award, Maharashtra Academy of Sciences (2019)Australian Alumni Research Grant (2022)

ObjectivešŸš€

Career Goal: Intend to build a career in a leading institution with committed and dedicated people, helping to explore my potential. Willing to work as a key player in a challenging and creative environment.

Research ExperiencešŸ”¬

15+ Years of Research Experience:Nanomaterials synthesisProton conductive membranesChemical vapor depositionRedox flow batteriesFuel cells and energy storage devices

Current PositionšŸ¢

National Chemical Laboratory, IndiaRamalingaswami Fellow and Assistant Professor, A-CSIR (May 2021 – Present)Project: High power density microbial fuel cells: Conversion of waste into electricity and chemicalsGrant: Australian Alumni research grant to develop cost-effective microbial fuel cells (2022)

Previous PositionsšŸŒ

New Mexico State University, USAPostdoctoral Research Associate (November 2016 – 2020)Large area single crystalline graphene production using atmospheric pressure chemical vapor depositionBreakthrough proton conductive membranes based on two-dimensional materials for microbial fuel cells and redox flow battery applicationsšŸŒ Monash University, AustraliaPostdoctoral Research Associate (December 2013 – 2016)High-quality graphene manufacturing and upscaling through flow chemistry approachesLarge area graphene oxide membranes for water desalination

Strengths for the Award:

Extensive Research Experience: Over 15 years of hands-on experience in advanced material synthesis and energy storage technologies.Innovative Contributions: Pioneering work in microbial fuel cells and cost-effective solutions for renewable energy.Proven Track Record: Multiple prestigious fellowships and awards showcasing a history of excellence and significant impact in the field.Strong Academic and Professional Background: Advanced degrees and notable positions in esteemed institutions worldwide.

Areas for Improvement:

Industry Collaboration: Increasing collaborations with industry partners to translate research findings into commercial applications.Funding Acquisition: Securing additional funding to expand research capabilities and explore new avenues.Public Outreach: Enhancing efforts to communicate scientific discoveries to the general public and policymakers to foster greater understanding and support.

Conclusion:

Dr. Dhanraj B. Shinde is a highly accomplished researcher with a formidable background in nanomaterials, fuel cells, and renewable energy technologies. His extensive experience, coupled with a proven track record of innovation and excellence, makes him a strong candidate for the Best Researcher Award. With continued focus on industry collaboration, funding acquisition, and public outreach, Dr. Shinde is well-positioned to drive significant advancements in sustainable energy solutions.

āœļøPublications Top Note :

Synergistic humidity-responsive mechanical motion and proton conductivity in a cationic covalent organic framework
Das, G., Shinde, D.B., Melepurakkal, A., El-Roz, M., Trabolsi, A.
ChemThis link is disabled.

Unique role of dimeric carbon precursors in graphene growth by chemical vapor deposition
Shinde, D.B., Chaturvedi, P., Vlassiouk, I.V., Smirnov, S.N.
Carbon Trends, 5, 100093

Exclusively Proton Conductive Membranes Based on Reduced Graphene Oxide Polymer Composites
Shinde, D.B., Vlassiouk, I.V., Talipov, M.R., Smirnov, S.N.
ACS Nano, 13(11), 13136ā€“13143

Development of CdZn(SSe)2 thin films by using simple aqueous chemical route: Air annealing
Jagadale, S.K., Shinde, D.B., Mane, R.M., Mane, R.K., Bhosale, P.N.
Materials Today: Proceedings, 4(2), 363ā€“368

Low temperature simple aqueous phase chemical synthesis and characterization of ZnO thin films
Shinde, D.B., Ghanwat, V.B., Khot, K.V., Mane, R.K., Bhosale, P.N.
Materials Today: Proceedings, 4(2), 119ā€“125

Fabrication of carbon nanorods and graphene nanoribbons from a metal-organic framework
Pachfule, P., Shinde, D., Majumder, M., Xu, Q.
Nature Chemistry, 8(7), 718ā€“724

Shear Assisted Electrochemical Exfoliation of Graphite to Graphene
Shinde, D.B., Brenker, J., Easton, C.D., Neild, A., Majumder, M.
Langmuir, 32(14), 3552ā€“3559

Large-area graphene-based nanofiltration membranes by shear alignment of discotic nematic liquid crystals of graphene oxide
Akbari, A., Sheath, P., Martin, S.T., Bhattacharyya, D., Majumder, M.
Nature Communications, 7, 10891

Electrochemical preparation of nitrogen-doped graphene quantum dots and their size-dependent electrocatalytic activity for oxygen reduction
Shinde, D.B., Dhavale, V.M., Kurungot, S., Pillai, V.K.
Bulletin of Materials Science, 38(2), 435ā€“442

Graphene nanoribbons as prospective field emitter
Khare, R., Shinde, D.B., Bansode, S., Pillai, V.K., Late, D.J.
Applied Physics Letters, 106(2), 023111

Mr. Bingtao Wang | Energy consumption model | Best Researcher Award


Warning: Undefined variable $insensitive in /home/u792129758/domains/sciencefather.com/public_html/mechanics-conferences/wp-content/plugins/internal-link-building-plugin/internal_link_building.php on line 201

Warning: Undefined variable $insensitive in /home/u792129758/domains/sciencefather.com/public_html/mechanics-conferences/wp-content/plugins/internal-link-building-plugin/internal_link_building.php on line 202

Mr. Bingtao Wang | Energy consumption model | Best Researcher Award

Mr. Bingtao Wang, Shan Dong University, China

Bingtao Wang, currently a Masterā€™s student in Communication Engineering at Shandong University (Weihai), holds a Bachelor’s degree in Electronic Engineering. His research focuses on energy consumption models and fault diagnosis in mobile robots. Bingtao has led multiple innovative projects, including the development of a quadcopter UAV and a visual perception crawler robot. His significant contribution lies in the creation of robust energy models and diagnostic methods that enhance the efficiency and reliability of Three-Wheeled Omnidirectional Mobile Robots (TOMRs), paving the way for future advancements in autonomous navigation and robotics.

Professional Profiles:

Orcid

šŸŽ“ Academic and Professional Background (100 words max):

Bingtao Wang, male, was born in Liaocheng City, Shandong Province in September 2001. In 2023, he graduated from Shandong University (Weihai) with a Bachelor’s degree in Electronic Engineering. He is currently pursuing a Master’s in Communication Engineering at Shandong University (Weihai), College of Electrical and Engineering. His research focuses on energy consumption model building and fault diagnosis.

šŸ“ Self-Declaration:

I authenticate that to the best of my knowledge the information given in this form is correct and complete. At any time, I am found to have concealed any material information, my application shall be liable to be summarily terminated without notice. I have read the terms and conditions and other policies of the Awards and agree to them.

āœļøPublications Top Note :

Dr. Jie Jian | Fuctional materials | Best Researcher Award


Warning: Undefined variable $insensitive in /home/u792129758/domains/sciencefather.com/public_html/mechanics-conferences/wp-content/plugins/internal-link-building-plugin/internal_link_building.php on line 201

Warning: Undefined variable $insensitive in /home/u792129758/domains/sciencefather.com/public_html/mechanics-conferences/wp-content/plugins/internal-link-building-plugin/internal_link_building.php on line 202

Dr. Jie Jian | Fuctional materials | Best Researcher Award

Dr. Jie Jian , Northwestern Polytechnical University, China

Dr. Jie Jian is a distinguished PostDoc in Materials Science at Northwestern Polytechnical University, specializing in photoelectrodes and photocatalysts. With expertise in nanomaterial synthesis and advanced film processing technologies, Dr. Jian has significantly contributed to the field through innovative research and optimization strategies. His academic journey includes a PhD and M.S. from NPU, focusing on BiVO4-nanocrystals and SiC ceramic composites, respectively, and a B.S. from Chongqing University. Dr. Jian has also gained industry experience as an engineer at Samsung Semiconductor. His work is characterized by a profound understanding of material characterization and software proficiency.

 

Professional Profiles:

Google Scholar

 

šŸŒŸ Technical-Scientific Skills šŸŒŸ

Mastering Preparation, Testing, and Characterization of photoelectrodes (photoanodes and photocathodes) and photocatalysts, proposing optimization strategies based on photoelectrochemical principles.Expert in Synthesis of Nanomaterials using pulsed laser irradiation in liquid and wet-chemical methods, and proficient in the design, synthesis, and functional exploration of porous materials.Film Processing Technologies: Skilled in spin coating, dip coating, chemical baths, electrodeposition, magnetron sputtering, and ALD.Material Characterization: Proficient in TEM, SEM, AFM, Raman, BET, UV-vis, XPS, XRD, FTIR.Software Proficiency: Photoshop, 3D-Max, Origin, Endnote, VESTA, Gatan, CAD, ChemDraw, Athena.

šŸ“š Academic Education and Career šŸ“š

03/2022-present
PostDoc in Materials Science, Northwestern Polytechnical University (NPU)
Supervisor: Prof. Hongqiang Wang
Project: In-situ Embedding Nanocrystals/Clusters in Porous Materials for Efficient Photo(electro)catalysis09/2016-03/2023
PhD in Materials Science, Northwestern Polytechnical University (NPU)
Supervisor: Prof. Hongqiang Wang
Thesis Title: Laser Derived Films of BiVO4-Nanocrystals for Efficient Photoelectrochemical Water Splitting04/2015-08/2016
Engineer, Samsung (China) Semiconductor Co., Ltd., Xiā€™an, China (SCS)
Task: Process controlling and equipment monitoring during chemical vapor deposition.09/2012-03/2015
M.S. in Materials Science, Northwestern Polytechnical University (NPU)
Supervisor: Prof. Laifei Cheng
Thesis Title: Strengthening and Toughening of Laminated (SiCp+SiCw)/SiC Ceramic Composites09/2008-07/2012
B.S. in Materials Science and Engineering, Chongqing University (CQU)
Supervisor: Prof. Baifeng Luan
Thesis Title: Study on deformation structure and texture of pure zirconium with large grain size rolled at liquid nitrogen temperature
GPA: 3.55/4
Ranking: 3/72

šŸ“–Ā Publications Top Note :

Embedding Laser-Generated Nanocrystals in BiVO4 Photoanode for Efficient Photoelectrochemical Water Splitting
J Jian, Y Xu, X Yang, W Liu, M Fu, H Yu, F Xu, F Feng, L Jia, D Friedrich, …
Nature Communications 10 (1), 2609 (2019)
Citations: 160

Recent Advances in Rational Engineering of Multinary Semiconductors for Photoelectrochemical Hydrogen Generation
J Jian, G Jiang, R van de Krol, B Wei, H Wang
Nano Energy 51, 457-480 (2018)
Citations: 160

Black BiVO4: Size Tailored Synthesis, Rich Oxygen Vacancies, and Sodium Storage Performance
X Xu, Y Xu, F Xu, G Jiang, J Jian, H Yu, E Zhang, D Shchukin, S Kaskel, …
Journal of Materials Chemistry A 8 (4), 1636-1645 (2020)
Citations: 67

Porous CuBi2O4 Photocathodes with Rationally Engineered Morphology and Composition Towards High-Efficiency Photoelectrochemical Performance
Y Xu, J Jian, F Li, W Liu, L Jia, H Wang
Journal of Materials Chemistry A 7 (38), 21997-22004 (2019)
Citations: 61

Ordered Porous BiVO4 Based Gas Sensors with High Selectivity and Fast-Response Towards H2S
C Li, X Qiao, J Jian, F Feng, H Wang, L Jia
Chemical Engineering Journal 375, 121924 (2019)
Citations: 59

Mr. Jeremy Jeba amuel J | Composite materials | Best Researcher Award


Warning: Undefined variable $insensitive in /home/u792129758/domains/sciencefather.com/public_html/mechanics-conferences/wp-content/plugins/internal-link-building-plugin/internal_link_building.php on line 201

Warning: Undefined variable $insensitive in /home/u792129758/domains/sciencefather.com/public_html/mechanics-conferences/wp-content/plugins/internal-link-building-plugin/internal_link_building.php on line 202

Mr. Jeremy Jeba amuel J | Composite materials
| Best Researcher Award

Mr. Jeremy Jeba amuel J , Francis Xavier Engineering College, India

Mr. Jeremy Jeba amuel J is academic and researcher in the field of renewable energy, holds a PhD in Bio systems Engineering from Kangwon National University, South Korea. His academic journey has been marked by a profound dedication to advancing solar energy technologies, specifically in solar thermal harvesting and its integration into agricultural and architectural applications.

 

Professional Profiles:

Google scholar

Orcid

šŸŒŸ Objective:

To seek a challenging and responsible position in an emerging organization with a competitive environment, leading the organization to excellence through high efficiency and innovative skills. Aim to provide the best quality and innovation in my work.

šŸŽ“ EducationalĀ 

DegreeYear of PassingPercentageInstitution Name
Ph.D (Pursuing)–Easwari Engineering College
M.E (Engineering Design)201571.1%Easwari Engineering College
B.E (Mechanical Engineering)201366.66%Dr. Sivanthi Adithanar College of Engineering
T.N.H.S.C200969%Margoschis Hr. Sec. School
SSLC200779%Margoschis Hr. Sec. S

Work Experience:

Institution NameFromToTotal Experience
Francis Xavier Engineering College, Tirunelveli24/06/2015Till Date6 years 8 months

Skill-set:

Languages: C, C++
Operating Systems: Windows 10
Packages: MS-Office, Origin
Tools: AutoCAD, Pro-E (Creo), CATIA, Ansys, Fluid sim, CNC Programmin

Industrial Exposure:

Undergone In-plant training at DCW Ltd and Sterlite Copper for two weeks.
Undergone In-plant training at TVS Motor Company for three days.
Visited various industries like Hyundai – Chennai, Doosan Power Systems, Aqua-Sub, Madras Radiators Pvt Ltd, and interacted with HRs regarding placement.

Technical Training:

Participated in numerous Faculty Training Programmes organized by various reputed institutions.
Attended seminars, webinars, and workshops from different institutions.

Achievements:

Secured First place in state-level project presentation competition conducted by Velammal College of Engineering & Technology, Madurai.
Secured Second place in national-level CAD Modelling conducted by Holycross Engineering College, Vagaikulam.
Secured Second place in national-level paper presentation competition conducted by SRM University – Ramapuram, Chennai.
Secured awards from the institution for achieving 100% results.
Coordinated a 1-week FDP sponsored by Anna University from 3rd Jan to 8th Jan 2022 under the title ME 8493 ā€“ Thermal Engineering 1.

šŸ“–Ā Publications Top Note :

Studies on Mechanical Properties and Characterization of Carbon Fiber Reinforced Hybrid Composite for Aerospace Application

Authors: J.J.J. Samuel, R. Ramadoss, K.N. Gunasekaran, K. Logesh, S.J.P. Gnanaraj, …

Journal: Materials Today: Proceedings

Volume: 47, pp. 4438-4443

Year: 2021

Citations: 27

An Experimental Study of the Properties of Carbon Fiber/Epoxy Composites Mixed with Rubber Granules

Authors: J.J.S. Joseph Jebaraj, R. Rajendran

Journal: International Journal of Polymer Science

Volume: 2024 (1), Article ID 5555592

Year: 2024

Green Methods of Larvae Control in Aquatic Environments: Using Solar Energy to Agitate Water

Authors: D.E. Paulsyah, S.J.P. Gnanaraj, R.S. Myrtle, C.J.C. Grace, J.J.J. Samuel

Conference: 2023 International Conference on Sustainable Communication Networks and …

Year: 2023

Vacuum Bag Technology for Obtaining Carbon/Epoxy Composites

Authors: M.J.J.S.J. Ajith Arumugam A, Karthikeyan S, Godlin S.R., Giftson Gnanaraj J

Journal: International Journal of Innovative Research in Science, Engineering and …

Year: 2021

Experimental Investigation on Fabrication Methods of Glass Fibre with Rubber Powder for Radome Applications

Authors: J.J.S.J. Esakki Raja, Anand K, Elson Pushpa M, Ganeshamanikandan C

Journal: Journal of Xidian University

Volume: 14 (Issue 5, 2020), pp. 894-900

Year: 2020

Fracture Analysis of Compact Tension Specimen

Authors: M.J.J.S. Mr. S. Sheik Sulaiman, Mr. K. Krishna Moorthy

Journal: International Journal of Research in Advanced Technology ā€“ IJORAT

Volume: 1 (9), pp. 49-55

Year: 2016

Performance Study on Hybrid Glass Fiber Epoxy Composite

Authors: M.J. Lakshmipathy, J. Jereme Jeba Samuel

Journal: International Journal of Research in Advanced Technology ā€“ IJORAT

Volume: 1 (1), pp. 18-22

Year: 2016

Study of Mechanical Properties and Characterization of Hybrid Polymer Matrix Composites Based on Water Absorption

Authors: S.S.P.J. Jeremy Jeba Samuel, Lakshmipathy

Journal: International Journal of Research in Advanced Technology ā€“ IJORAT

Volume: 1 (1), pp. 36-40

Year: 2016

Mechanical Properties and Characterization Studies in Natural Fiber/Lignite Fly Ash Reinforced Hybrid Composites

Authors: S.K. G.K., K.G. Ashok

Journal: Journal of Manufacturing Engineering

Volume: 10 (3), pp. 157-160

Year: 2015

An End for Cancer by Nanotechnology

Authors: (Details not provided)

Prof. Vladislav Sadykov | functional nanomaterials | Best Researcher Award


Warning: Undefined variable $insensitive in /home/u792129758/domains/sciencefather.com/public_html/mechanics-conferences/wp-content/plugins/internal-link-building-plugin/internal_link_building.php on line 201

Warning: Undefined variable $insensitive in /home/u792129758/domains/sciencefather.com/public_html/mechanics-conferences/wp-content/plugins/internal-link-building-plugin/internal_link_building.php on line 202

Prof. Vladislav Sadykov | functional nanomaterials | Best Researcher Award

Prof. Vladislav Sadykov, Boreskov Institute of catalysis, Russia

Prof. Vladislav Sadykov is academic and researcher in the field of renewable energy, holds a PhD in Bio systems Engineering from Kangwon National University, South Korea. His academic journey has been marked by a profound dedication to advancing solar energy technologies, specifically in solar thermal harvesting and its integration into agricultural and architectural applications.

 

Professional Profiles:

Scopus

Orcid

Education šŸŽ“

MS, 1973: Novosibirsk State University, RussiaPhD, 1979: Boreskov Institute of Catalysis (BIC), NovosibirskDoctor of Sciences, 1999: Boreskov Institute of Catalysis, NovosibirskProfessor, 1999: Novosibirsk State University, Novosibirsk

Career/Employment šŸ¢

Boreskov Institute of Catalysis:Research Fellow, 1973Junior Research Scientist, 1975Senior Research Scientist, 1985Head of Laboratory, 1990-2021; Chief Research Scientist, up to dateNovosibirsk State University:Professor, 1999-up to date; Chair of Physical Chemistry and Solid State Chemistry

Current Research Interests šŸ”¬

Heterogeneous Catalysis: Red-ox processes for energy production (including solid oxide fuel cells) and environmental protectionCatalytic Processes: Short contact times for syngas and hydrogen production from biofuelsNanophase and Nanocomposite Materials: Advanced technologies in complex oxides, pillared clays, framework silicates, nanocomposites with mixed ionic-electronic conductivity synthesisSolid State Ionics: Oxygen and hydrogen separation membranes

International Collaboration šŸŒ

BIC Team Leader in FP6 Projects:SOFC 600 SES6-2006-020089 ā€œDemonstration of SOFC stack technology for operation at 600Ā°Cā€STRP 033410 MatSILC ā€œNovel Materials for Silicate-Based Fuel Cellsā€FP7 Project OCMOL228953: ā€œOxidative Coupling of Methane followed by Oligomerization to Liquidsā€BIOGO for Production, THEBARCODE: NATO Science for Peace Project ā€œSolid Oxide Fuel Cells for Energy Securityā€International Science and Technology Center (ISTC) Projects:2529 ā€œDevelopment of an efficient, inexpensive nanocomposite catalyst and elaboration of a flexible technology to produce syn-gas for fuel cellsā€3234 ā€œDevelopment of high-performance oxygen-conducting membranes and compact pure syngas generators on their baseā€Russian-French Network of Laboratories: ā€œFundamental bases of design of nanocomposite catalysts for transformation of biofuels into syngas and hydrogenā€ (Partner Lab. of Materials, Univ. Strasbourg, CNRS, Prof. A.ā€“C. Roger), 2011-2014INTAS Projects: Collaborations with Prof. J. Ross (Ireland), Prof. E. Kemnitz (Germany), Prof. S. Neophytides (Greece), et al.

Honours, Awards, Fellowships, Membership of Professional Societies šŸ…

Award of the Russian Federation Government in Science and Technology, 1999: Development and Industrial Application of the Two-Stage Technology of Ammonia Oxidation under Pressure in the Diluted Nitric Acid ProductionBalandin Award of the Russian Academy of Sciences, 2007: Series of works ā€œThe role of defect structure of catalysts of red-ox reactionsā€Koptyug Award, 2012: NAN Belarus-Siberian Branch of the Russian Academy of Sciences for the series of works ā€œScientific bases of design of composite and nanostructured materials for the hydrogen energy fieldā€Editorial Board Member:Applied Catalysis APhysics of Combustion and Flame (Russia)Open Chemistry (de Gruyter Open)Energies (MDPI)Membranes (MDPI)Professional Society Membership:American Chemical SocietyMaterials Research Society (USA)Mendeleev Chemical Society (Russia)

Title: Approaches to the design of efficient and stable catalysts for biofuel reforming into syngas: doping the mesoporous MgAl2O4 support with transition metal cations

Journal: Dalton Transactions

Year: 2023

Contributors: Vladislav A. Sadykov, Nikita F. Eremeev, Ekaterina Sadovskaya, Julia E. Fedorova, Marina V. Arapova, Ludmilla N. Bobrova, Arkady V. Ishchenko, Tamara A. Krieger, Maksim S. Melgunov, Tatyana S. Glazneva, et al.

DOI: 10.1039/D3DT00830D

Title: Design of Mixed Ionic-Electronic Materials for Permselective Membranes and Solid Oxide Fuel Cells Based on Their Oxygen and Hydrogen Mobility

Journal: Membranes

Year: 2023-07-27

Contributors: Vladislav Sadykov, Elena Pikalova, Ekaterina Sadovskaya, Anna Shlyakhtina, Elena Filonova, Nikita Eremeev

DOI: 10.3390/membranes13080698

Title: Methane Dry Reforming Catalysts Based on Pr-Doped Ceriaā€“Zirconia Synthesized in Supercritical Propanol

Journal: Energies

Year: 2023-06-15

Contributors: Marina Arapova, Ekaterina Smal, Yuliya Bespalko, Konstantin Valeev, Valeria Fedorova, Amir Hassan, Olga Bulavchenko, Vladislav Sadykov, Mikhail Simonov

DOI: 10.3390/en16124729

Title: Synthesis and Oxygen Mobility of Bismuth Cerates and Titanates with Pyrochlore Structure

Journal: Membranes

Year: 2023-06-13

Contributors: Yuliya Bespalko, Nikita Eremeev, Ekaterina Sadovskaya, Tamara Krieger, Olga Bulavchenko, Evgenii Suprun, Mikhail Mikhailenko, Mikhail Korobeynikov, Vladislav Sadykov

DOI: 10.3390/membranes13060598

Title: Dry Reforming of Methane over 5%Ni/Ce1-xTixO2 Catalysts Obtained via Synthesis in Supercritical Isopropanol

Journal: International Journal of Molecular Sciences

Year: 2023-06-02

Contributors: Ekaterina Smal, Yulia Bespalko, Marina Arapova, Valeria Fedorova, Konstantin Valeev, Nikita Eremeev, Ekaterina Sadovskaya, Tamara Krieger, Tatiana Glazneva, Vladislav Sadykov, et al.

DOI: 10.3390/ijms24119680

Title: Ethanol Dry Reforming over Bimetallic Niā€Containing Catalysts Based on Ceriaā€Zirconia for Hydrogen Production

Journal: ChemCatChem

Year: 2023-05-19

Contributors: Valeria Fedorova, Yulia Bespalko, Marina Arapova, Ekaterina Smal, Konstantin Valeev, Igor Prosvirin, Vladislav Sadykov, Ksenia Parkhomenko, Anneā€CĆ©cile Roger, Mikhail Simonov

DOI: 10.1002/cctc.202201491

Title: Methane Dry Reforming Catalysts Based on Pr-doped Ceria-Zirconia Synthesized in Supercritical Propanol

Journal: Preprint

Year: 2023-05-09

Contributors: Marina Arapova, Ekaterina Smal, Yuliya Bespalko, Konstantin Valeev, Valeria Fedorova, Amir Hassan, Olga Bulavchenko, Vladislav Sadykov, Mikhail Simonov

DOI: 10.20944/preprints202305.0617.v1

Title: Advances in Hydrogen and Syngas Generation

Journal: Energies

Year: 2023-03-29

Contributors: Vladislav Sadykov

DOI: 10.3390/en16073127

Title: Structural and transport properties of Nd tungstates and their composites with Ni0.5Cu0.5O obtained by mechanical activation

Journal: Dalton Transactions

Year: 2022

Contributors: Nikita F. Eremeev, Yuliya N. Bespalko, Ekaterina M. Sadovskaya, Pavel I. Skriabin, Tamara A. Krieger, Arcady V. Ishchenko, Vladislav A. Sadykov

DOI: 10.1039/D2DT00498D

Title: Ni and Niā€“Co Catalysts Based on Mixed Ceā€“Zr Oxides Synthesized in Isopropanol Medium for Dry Reforming of Methane

Journal: Russian Journal of Physical Chemistry B

Year: 2022-12

Contributors: Yu. N. Bespalko, V. E. Fedorova, E. A. Smal, M. V. Arapova, K. R. Valeev, T. A. Krieger, A. V. Ishchenko, V. A. Sadykov, M. N. Simonov

DOI: 10.1134/S1990793122080048

Title: Efficient Catalysts of Ethanol Steam Reforming Based on Perovskite-Fluorite Nanocomposites with Supported Ni: Effect of the Synthesis Methods on the Activity and Stability

Journal: Catalysts

Year: 2022-10

Contributors: Marina Arapova, Symbat Naurzkulova, Tamara Krieger, Vladimir Rogov, Vladislav Sadykov

DOI: 10.3390/catal12101151