Tso-Fu Mark Chang | Multiferroic materials | Best Researcher Award

Assoc. Prof. Dr Tso-Fu Mark Chang | Multiferroic materials | Best Researcher Award

Assocaite Professor, Institute of Science Tokyo, Japan

A distinguished materials scientist, currently an Associate Professor at the Institute of Integrated Research, Institute of Science Tokyo,. Holds a Doctor of Engineering from Tokyo Institute of Technology (2012). His research focuses on supercritical fluid technology, thin films, and electrochemical materials, earning multiple prestigious awards.

Profile

scholar

Education 🎓📖

Doctor of Engineering (Materials Science & Engineering), Tokyo Institute of Technology, Japan (2012) 🏅 | Master of Engineering, Tokyo Institute of Technology, Japan (2011) 🎓 | Master of Chemical Engineering, National Tsing-Hua University, Taiwan (2007) 🏆 | Bachelor of Applied Science & Engineering, University of Toronto, Canada (2004) 🌍

Experience 🔬💼

Associate Professor, Institute of Integrated Research, Institute of Science Tokyo (2024present) 🏛️ | Associate Professor, Institute of Innovative Research, Tokyo Tech (20212024) 📚 | Assistant Professor, Tokyo Tech (20122021) 🏅 | QA Engineer, DuPont, Taiwan (20082009) 🏭 | Lab Assistant, ITRI, Taiwan (2005) 🔍

Awards & Honors 🏆🎖️

Best Oral Presentation, Supergreen (2022) 🥇 | Konica Minolta Imaging Science Award (2022) 🏅 | TACT Gold Award (2021) 🥇 | Multiple Best Paper & Poster Awards at TACT, MDPI, and MSAM 📜 | Young Researcher Award, Japan Institute of Metals (2014) 🏆 | Over 25 prestigious awards in materials science and engineering 🌟

Research Focus 🧪

Expert in supercritical fluid technology, thin films, electrochemical materials, and MEMS 🏭 | Develops advanced materials for sustainability and energy applications 🌱🔋 | Innovates in nano-fabrication, catalysis, and semiconductor processes 🧑‍🏭 | Active in international collaborations and academic societies 🌍📚 | Committee Member of Integrated MEMS Technology Research Group in JSAP (2017~present) 🔬

Publications 

Mechanistic insights into photodegradation of organic dyes using heterostructure photocatalysts

Preparation of monolithic silica aerogel of low thermal conductivity by ambient pressure drying

Bright nickel film deposited by supercritical carbon dioxide emulsion using additive-free Watts bath

 

Conclusion:

The candidate’s exceptional research achievements, global recognition, and leadership in materials science make them a strong contender for the Best Researcher Award. Addressing industry collaboration and commercialization aspects could further enhance their candidacy.

 

Huajie Luo | Functional materials | Best Researcher Award

Assoc. Prof. Dr Huajie Luo | Functional materials | Best Researcher Award

Scientific researcher at University of science and technology Beijing, China

👨‍🔬 Huajie Luo (b. 1991, Beijing) is an Associate Professor at the University of Science and Technology Beijing (USTB). He specializes in materials science, particularly in the design and performance regulation of ferroelectric ceramics and thin films. His work bridges atomic structures with macroscopic properties like energy storage and electrostrain. Luo has published extensively in top-tier journals and holds multiple patents. He is known for applying advanced techniques like synchrotron XRD and neutron diffraction to study crystal structures. 🌍📚

Pofile

scholar

Education🎓

Huajie Luo earned a Master’s and Ph.D. in Physical Chemistry from the University of Science and Technology Beijing (USTB), where he also completed his postdoctoral research. His doctoral research focused on ferroelectric materials and structure-property relationships. His expertise spans from theoretical modeling to experimental synthesis. 🌟

Experience💼

Luo is currently an Associate Professor at USTB (since 2023) and was a postdoctoral researcher at USTB’s Department of Physical Chemistry (2022-2023). He has participated in significant national research projects and supervised multiple funded initiatives. His broad expertise includes advanced material characterization and design for high-performance devices. 🔬⚙️

Awards and Honors🏅 

Luo has received numerous accolades, including selection for the Postdoctoral Innovative Talent Program and the 2024 Outstanding Postdoctoral Award from USTB. He also earned the 2024 Wiley China High Contribution Author Award and serves on the Youth Editorial Board of Microstructures. 🏆📑

Research Focus🔬

Luo’s research focuses on the design and performance of ferroelectric ceramics and thin films, particularly their macroscopic properties such as electrostrain and energy storage. He uses advanced techniques like synchrotron XRD and neutron diffraction for structural analysis. His work aims to enhance energy storage efficiency and piezoelectric performance. ⚡🧪

Publications

“Chemical design of Pb-free relaxors for giant capacitive energy storage”
Authors: H. Liu, Z. Sun, J. Zhang, et al.
Journal of the American Chemical Society, 145 (21), 11764-11772, 2023

Focuses on the chemical design of lead-free relaxors for large capacitive energy storage.

“Superior capacitive energy-storage performance in Pb-free relaxors with a simple chemical composition”
Authors: Z. Sun, J. Zhang, H. Luo, et al.
Journal of the American Chemical Society, 145 (11), 6194-6202, 2023

Explores the capacitive energy storage performance in Pb-free relaxors with a simplified chemical structure.

“Achieving giant electrostrain of above 1% in (Bi,Na)TiO3-based lead-free piezoelectrics via introducing oxygen-defect composition”
Authors: H. Luo, H. Liu, H. Huang, et al.
Science Advances, 9 (5), eade7078, 2023

Focuses on achieving large electrostrain in (Bi,Na)TiO3-based piezoelectrics with oxygen-defect composition.

“Simultaneously enhancing piezoelectric performance and thermal depolarization in lead-free (Bi, Na) TiO3-BaTiO3 via introducing oxygen-defect perovskites”
Authors: H. Luo, H. Liu, S. Deng, et al.
Acta Materialia, 208, 116711, 2021

Investigates the enhancement of piezoelectric and thermal depolarization properties in (Bi, Na) TiO3-BaTiO3 ceramics.

“Local chemical clustering enabled ultrahigh capacitive energy storage in Pb-free relaxors”
Authors: H. Liu, Z. Sun, J. Zhang, et al.
Journal of the American Chemical Society, 145 (35), 19396-19404, 2023

Highlights the role of local chemical clustering in enhancing energy storage performance in Pb-free relaxors.

Conclusion

In conclusion, Huajie Luo exemplifies the qualities sought after in a Best Researcher Award recipient—exceptional academic productivity, innovative research, and a clear impact on the scientific community. His continued success in both academic and industrial collaborations will likely yield even more groundbreaking results, making him a strong contender for this prestigious award.

Jen-Taut Yeh | communication substrate materials | Best Researcher Award

Prof.  MatSE Department/Hubei University, china

Prof. Jen-taut Yeh has established himself as a leading figure in the field of materials science and engineering, particularly in the areas of functional polymers, nanocomposite materials, and high-performance textiles. His academic journey, spanning several decades, has been marked by significant contributions to research, innovation, and education, positioning him as an influential scientist and educator in the global materials science community. Currently serving as a chair professor in the Department of Materials Science and Engineering (MatSE) at Hubei University in Wuhan, China, Prof. Yeh continues to lead cutting-edge research and mentor the next generation of scientists.

Professional Profiles:

🌟 Prof. Jen-taut Yeh: A Distinguished Career in Materials Science

🎓 Academic Background

Prof. Jen-taut Yeh embarked on his illustrious academic journey with a Bachelor of Science (B.S.) in Chemical Engineering from National Taiwan University in 1981. His passion for polymers led him to pursue a Ph.D. in the polymer science program at the Department of Materials Science and Engineering (MatSE) at Penn State University, where he earned his degree in 1989. This solid foundation laid the groundwork for his future groundbreaking research in materials science.

🧪 Early Research Experience

After completing his Ph.D., Prof. Yeh spent six months as a Research Scientist at the MatSE Department of the University of Pennsylvania, working closely with Professor N. Brown. This period allowed him to further hone his research skills and gain valuable experience in the field of materials science, setting the stage for his future academic contributions.

👨‍🏫 Academic Career at NTUST

In 1990, Prof. Yeh returned to Taiwan and joined the faculty of the National Taiwan University of Science and Technology (NTUST) as an associate professor. His dedication to research and teaching earned him a promotion to full professor in the Department of Materials Science and Engineering in 1995. During his tenure at NTUST, Prof. Yeh made significant strides in the development of functional polymers and nanocomposite materials, contributing over 200 peer-reviewed publications to the scientific community.

🌍 Global Impact and Patents

Prof. Yeh’s research has had a profound impact on both academia and industry. As an inventor and co-inventor, he holds more than 35 patents, particularly in the areas of functional polymers, nanocomposite materials, and high-performance textiles. His innovations have led to advancements in various industries, including textiles, electronics, and biotechnology, making him a prominent figure in the field of materials science.

🏫 Leadership at Kun San and Hubei University

After retiring from NTUST in 2013, Prof. Yeh continued to contribute to academia as a chair professor in the MatSE Department at Kun San (Tainan, Taiwan) and later at Hubei University (Wuhan, China). In these roles, he has continued to lead research initiatives and mentor young scientists, ensuring the continued advancement of materials science.

📚 Legacy and Contributions

Prof. Yeh’s career is marked by a dedication to advancing knowledge in materials science. His contributions to functional polymers, nanocomposite materials, and high-performance textiles have left a lasting legacy in both research and practical applications. His work exemplifies the integration of scientific research with real-world innovation, making him a highly respected and influential figure in the global materials science community.

Strengths for the Award

  1. Extensive Research Contributions: Professor Yeh has authored over 200 peer-reviewed publications, showcasing a prolific and impactful research career in materials science and polymer engineering. His extensive body of work indicates a deep commitment to advancing knowledge in his field.
  2. Innovative Patents: With more than 35 patents related to functional polymers, nano-composite materials, and high-performance textiles, Professor Yeh has demonstrated significant innovation. These patents highlight his role in developing cutting-edge technologies that have practical applications in various industries.
  3. Diverse Expertise: His research spans functional polymers, nano-composites, and textiles, reflecting a broad and versatile expertise. This diverse focus is valuable for addressing complex problems in material science and engineering.
  4. International Experience: Having held prestigious positions at institutions in Taiwan and China, and experience as a Research Scientist at the University of Pennsylvania, Professor Yeh brings a global perspective and a wealth of international experience to his research.
  5. Long-Term Academic Influence: His academic career, including roles as an associate professor, professor, and chair professor, illustrates long-term influence and leadership in the field of materials science and engineering.

Areas for Improvement

  1. Recent Research Trends: While Professor Yeh has a strong historical track record, continuous adaptation to the latest research trends and emerging technologies is crucial. Keeping abreast of the latest developments in materials science and integrating them into his work could further enhance his contributions.
  2. Collaborative Research: Expanding collaborative efforts with researchers in emerging fields or interdisciplinary areas could lead to new innovations and applications. Collaborations with industry partners or researchers from other scientific disciplines might yield groundbreaking results.
  3. Research Impact Metrics: While the number of publications and patents is impressive, focusing on increasing the impact and citation of his work could strengthen his profile. Engaging more actively in high-impact journals or conferences might enhance his research visibility.

 

✍️Publications Top Note :

Poly(ether ketone ketone)/Silica Nanotubes Substrate Films:

Publication: Journal of Polymer Research, 2024, 31(2), 33.

Summary: This work explores the use of PEKK combined with silica nanotubes to create advanced substrate films suitable for 6G communication systems. The research highlights the material’s potential to enhance performance in high-frequency applications.

Poly(ether ketone ketone)/Hollow Silica Filler Substrates:

Publication: Polymer International, 2024.

Summary: Similar to the previous research, this study investigates PEKK substrates but with hollow silica fillers, focusing on improving material properties for 6G applications.

Fifth Generation (5G) Communication Materials

Poly(ether ketone ketone)/Modified Montmorillonite Substrate:

Publication: Macromolecular Research, 2022, 30(2), pp. 107–115.

Summary: This study focuses on substrates made from PEKK and modified montmorillonite for use in 5G communication technologies, examining how these materials can improve signal performance.

SiO2 Filled Functional Polypropylene Substrates:

Publication: Journal of Macromolecular Science, Part B: Physics, 2022, 61(6), pp. 696–718.

Summary: This research evaluates the performance of polypropylene substrates filled with SiO2 for 5G communication, focusing on functional properties that enhance communication efficiency.

Sustainable and Renewable Materials

ScCO2-Processed Thermoplastic Starch/Chitosan Oligosaccharide Blown Films:

Publication: Journal of Polymer Engineering, 2024.

Summary: This study investigates the use of supercritical CO2 (ScCO2) to process thermoplastic starch and chitosan oligosaccharides, producing blown films with oxygen barrier and antibacterial properties.

Fully Renewable Oxygen Barrier Films from ScCO2-Processed Thermoplastic Starch/Sugar Alcohol Blends:

Publication: Journal of Polymer Engineering, 2024.

Summary: The focus here is on creating oxygen barrier films from renewable resources, particularly thermoplastic starch and sugar alcohol blends, processed with ScCO2.

Renewable Thermoplastic Starch/Sugar Alcohol Blends:

Publication: Polymer Engineering and Science, 2024, 64(1), pp. 231–242.

Summary: This work continues the exploration of renewable thermoplastic starch blended with sugar alcohols, aiming to develop materials with practical applications in oxygen barrier technology.

Material Processing and Performance Enhancement

Effect of Supercritical CO2 and Alkali Treatment on Oxygen Barrier Properties:

Publication: Journal of Polymer Engineering, 2023, 43(10), pp. 833–844.

Summary: This article explores the impact of supercritical CO2 processing and alkali treatment on the oxygen barrier properties of thermoplastic starch/PVA films.

Micro Foaming of Glutaraldehyde/Hexametaphosphate/Thermoplastic Starch Foams:

Publication: Cellular Polymers, 2022, 41(3), pp. 119–143.

Summary: This research deals with the micro-foaming performance of thermoplastic starch foams modified with alkali treatment and montmorillonite nano-platelets, processed with ScCO2.

Advanced Fiber Materials

Multistage Drawing of ScCO2-Assisted UHMWPE/Activated Nanocarbon Fibers:

Publication: Journal of Polymer Research, 2022, 29(3), 78.

Conclusion

Professor Jen-Taut Yeh is a distinguished researcher with a substantial and impactful career in materials science. His extensive publication record, innovative patents, and diverse research interests are notable strengths. To further enhance his candidacy for the Best Researcher Award, focusing on current research trends, expanding collaborative efforts, and improving research impact metrics could be beneficial. His proven track record and ongoing contributions make him a strong contender for recognition in the field of materials science and engineering.

Dr AlaaMohamed Adam | Materials science | Excellence in Research

Dr Alaa Mohamed Adam: Leading Researcher in Materials science
Dr Alaa Mohamed Adam,   Department of physics, Faculty of Science, Sohag University, Sohag, Egypt.    

Dr. Alaa Mohamed Adam, associated with Sohag University, is a distinguished researcher making significant strides in the realm of material science. His leadership in research underscores a commitment to advancing our understanding of materials and their applications. Dr. Adam’s work contributes to the forefront of scientific knowledge, with a focus on innovative approaches within material science. Through his research endeavors, he plays a vital role in elevating Sohag University’s profile as a hub for cutting-edge scientific inquiry, fostering advancements that hold the potential to impact various industries and technologies.

 

Professional Profiles:

 

 

Education:

 

1 – PhD Degree (Doctoral) Department of physics, University of Chemical Technology and Metallurgy, Sofia, Bulgaria. Grant agreement no. 2011-4051/002-001-EMA2 supported by the European Commission (Mediterranean Area for Science, Technology and Research, 2013). Thesis Title: Thermoelectrical Bi2Se3-Bi2Te3 Thin Films. Date of Graduation: 2016.

2- master’s degree, Major: Natural Science (Physics). Department of physics, Faculty of Science, Sohag University, Sohag, Egypt. Thesis Title: Studies on Some Physical Properties of Bismuth Selenide Compound Doped with Antimony Element, Date of Graduation: 2011.

3- bachelor’s degree, Major: Natural Science, Physics.

 

Work Experience:

 

1 – Assistant professor and Senior lecturer at National University of Science and Technology, Moscow, Russia, 2016-2018.

2 – Lecturer of Physics at Physics Department, Faculty of Science, Sohag university, Egypt, 2018-2020.

3- Associate professor, Faculty of Engineering, King Salman International University, South Sinai, Egypt, 2020 – present

 

Research Experience:

 

1. Lecturer of Physics at Department of physics, Faculty of Science, University of Sohag, Egypt, 2018-present.

2. Assistant professor and Senior lecturer at the National University of Science and Technology, Moscow, Russia, 2016-2018.

3. Researcher at Department of physics, University of Chemical Technology and Metallurgy, Sofia, Bulgaria 2013-2016.

4. Assistant Lecturer and researcher at Department of physics, Faculty of Science, University of Sohag, Sohag, Egypt 2011-2013.

5. Demonstrator of physics and researcher assistant at Department of physics, Faculty of Science, Sohag University, Sohag, Egypt 2007-2011.

 

Publications and Tops Notes  ;

 

1- Structural and magnetic properties of Dy doped SrFe12O19 ferrites, Materials Today Communications, 2023, 35, 105884. Adam, A.M. , Elshafaie, A., Ibrahim, E.M.M. https://doi.org/10.1016/j.mtcomm.2023.105884

2- Annealing effect on the thermoelectric properties of multiwall carbon nanotubes, Physica E: Low-dimensional Systems and Nanostructures 146 (2023) 115566 A.M. Adam, et al. https://doi.org/10.1016/j.physe.2022.115566

3- Structure, Thermal, and Physic-Chemical Properties of some Chalcogenide Alloys Thermal Science, 2023, 27(1), pp. 397–404. Adam, A.M., Abdel-Rehim, W.M.F., Petkov, P., Ataalla, M. https://doi.org/10.2298/TSCI221001195A

4- Electrical and thermoelectrical properties of Bi2−xNaxTe3 alloys, Journal of Alloys and Compounds 920 (2022) 165952 A.M. Adam, A.K. Diab, Medhat A. El-Hadek, Ahmed O. Sayed, E.M.M. Ibrahim. https://doi.org/10.1016/j.jallcom.2022.165952

5- Heat treatment effects on the structural and optical properties of thin Bi2(Se1-xTex)3 films, Ceramics International, 2022, 48(21), pp. 31148–31156. El-Qahtani, Z.M.H. , El-Hadek, M.A. , Alotaibi, M.F. , Petkov, P. , Adam, A.M,. https://doi.org/10.1016/j.ceramint.2022.06.189

6- Outstanding optical properties of thermally grown (Bi2Se3)1-x (Bi2Te3)x thin films, Materials Science in Semiconductor Processing 143, (2022) 106557, A.M. Adam et al. https://doi.org/10.1016/j.mssp.2022.106557