Jinde Zhang | Bioinspired Functional Surfaces | Best Researcher Award

Mr. Jinde Zhang | Bioinspired Functional Surfaces  | Best Researcher Award

Assistant Professor at University of Massachusetts Lowell,United States

Dr. Jinde Zhang, a Research Assistant Professor at the University of Massachusetts Lowell, specializes in polymer engineering and superhydrophobic coatings. 🌟 With expertise in surface chemistry, drag reduction, and anti-ice adhesion, Dr. Zhang’s research impacts sustainable materials and advanced composites. 🌍 His innovative contributions have been featured in leading scientific journals. 🧪

Publication Profile

orcid

Education🎓

Ph.D. in Plastics Engineering, University of Massachusetts Lowell, 2015.  M.S. in Polymer Chemistry and Physics, University of Science and Technology of China, 2011.  B.S. in Applied Chemistry, Xidian University, China, 2007.

Experience👨‍🔬 

Research Assistant Professor, University of Massachusetts Lowell, 2022–Present. Research Scientist, University of Massachusetts Lowell, 2017–2022  Postdoctoral Researcher, University of Massachusetts Lowell, 2015–2017.

Awards and Honors🏆

Hosted the Polymer Processing Society International Conference, 2018. Region IV Middle School Science Fair Mentor, 2013–2015. Nanodays Volunteer, Boston Museum of Science, 2013–2015.

Research Focus🔬

Superhydrophobic coatings for drag reduction and corrosion resistance. Development of anti-ice adhesion materials.  Recycling impacts on carbon nanotube-filled composites.  Roll-to-roll processing for advanced polymers.

Publications 📖

Tuning Wetting Properties Through Surface Geometry in the Cassie–Baxter State

Journal: Biomimetics, 2025-01-02

DOI: 10.3390/biomimetics10010020

Contributors: Talya Scheff, Florence Acha, Nathalia Diaz Armas, Joey L. Mead, Jinde Zhang

Structure–Property Relationships for Fluorinated and Fluorine-Free Superhydrophobic Crack-Free Coatings

Journal: Polymers, 2024-03-24

DOI: 10.3390/polym16070885

Contributors: Sevil Turkoglu, Jinde Zhang, Hanna Dodiuk, Samuel Kenig, Jo Ann Ratto Ross, et al.

Effect of Composition on Adhesion and Chemical Resistance in Multilayer Elastomer Laminates

Journal: ACS Applied Polymer Materials, 2023-03-30

DOI: 10.1021/acsapm.3c00132

Contributors: Jianan Yi, Mykhel Walker, Jinde Zhang, Christopher J. Hansen, Walter Zukas, Joey Mead

Dynamic Wetting Properties of Silica-Poly(Acrylic Acid) Superhydrophilic Coatings

Journal: Polymers, 2023-02-28

DOI: 10.3390/polym15051242

Contributors: Sevil Turkoglu, Jinde Zhang, Hanna Dodiuk, Samuel Kenig, Jo Ann Ratto, Joey Mead

Wetting Characteristics of Nanosilica-Poly(Acrylic Acid) Transparent Anti-Fog Coatings

Journal: Polymers, 2022-11-01

DOI: 10.3390/polym14214663

Contributors: Sevil Turkoglu, Jinde Zhang, Hanna Dodiuk, Samuel Kenig, Jo Ann Ratto, Joey Mead

The Reduction in Ice Adhesion Using Controlled Topography Superhydrophobic Coatings

Journal: Journal of Coatings Technology and Research, 2022-10-18

DOI: 10.1007/s11998-022-00682-2

Contributors: Yujie Wang, Jinde Zhang, Hanna Dodiuk, Samuel Kenig, Jo Ann Ratto, Carol Barry, Joey Mead

The Effect of Superhydrophobic Coating Composition on Topography and Ice Adhesion

Journal: Cold Regions Science and Technology, 2022-09

DOI: 10.1016/j.coldregions.2022.103623

Contributors: Yujie Wang, Jinde Zhang, Hanna Dodiuk, et al.

Improved Adhesion in Elastomeric Laminates Using Elastomer Blends

Journal: Rubber Chemistry and Technology, 2022-07-01

DOI: 10.5254/rct.22.78968

Contributors: Jianan Yi, Erin Keaney, Jinde Zhang, et al.

Listeria Monocytogenes Biofilm Formation as Affected by Stainless Steel Surface Topography and Coating Composition

Journal: Food Control, 2021-12

DOI: 10.1016/j.foodcont.2021.108275

Contributors: Tingting Gu, Apisak Meesrisom, Jinde Zhang, et al.

Effect of Protein Adsorption on Air Plastron Behavior of a Superhydrophobic Surface
(Details forthcoming or under publication)

Conclusion

Zhang Jinde is an exceptional candidate for the Best Researcher Award due to his innovative contributions to materials science, specifically in the area of superhydrophobic surfaces. His work not only advances academic knowledge but also holds significant potential for real-world applications. Zhang’s ability to bridge interdisciplinary fields and engage with the wider scientific and public community adds further strength to his candidacy. Continued collaboration, diversification of research topics, and enhanced public engagement will elevate his already impressive research trajectory. Therefore, Zhang Jinde is highly deserving of recognition for his groundbreaking work in the realm of polymer engineering and material science.

Md Mahfuzur Rahman | Cellulose | Best Researcher Award

Dr.  Bangladesh University of Textiles, Bangladesh

I am currently pursuing a B.Sc. degree in Textile Engineering with a specialization in Industrial and Production Engineering at the Bangladesh University of Textiles (BUTEX) in Bangladesh. Since 2018, I have been working as a research assistant at both BUTEX and North South University (NSU). My research interests include Nanomaterials & Nanomechanics, Semiconductor Electrophysics, Magnetic Materials, Wearable Smart Textiles, Biomedical applications, Thin Film Magnetism, First-principle DFT studies, and Engineered 2D Quantum Materials. I have previously conducted research on ferrite nanomaterials, synthesizing and characterizing their properties, as well as sustainable textiles. I have recently been working on smart textiles and experimental and DFT analysis of perovskite materials. Moreover, I actively participated in various clubs, including BUTEX Sports Club and BUTEX Youth Development Club, which honed my leadership and event management skills. From an early age, mathematics has been my favorite subject, and I have actively participated in the Bangladesh Mathematical Olympiad, achieving two awards. Additionally, in 2016, I secured the 12th position in the Bangladesh Physics Olympiad. I also participated at Asian Pacific Mathematical Olympiad. My penchant for creative endeavors inspired my research journey, which began in my first year of undergraduate studies.

Professional Profiles:

🎯 Career Objective

I aim to be a valuable professional contributing to institutions and society through creative and impactful research. Seeking a research-oriented position to leverage my knowledge and skills, I thrive in challenging environments that foster continuous learning. My passion lies in Material Science related research.

🎓 Education

Bangladesh University of Textiles, Dhaka, BangladeshB.Sc. in Textile Engineering (Specialization in Industrial & Production Engineering) (2018-2023)CGPA: 3.16/4Rajshahi Govt. City College, Rajshahi, BangladeshHigher Secondary Certificate (2017)GPA: 5/5Agrani School and College, Rajshahi, BangladeshSecondary School Certificate (2015)GPA: 5/5

💻 Technical Qualifications

Computer Skills

C, Python, MS Office, OriginLab Software, FullProf Software, Imagej, CAD, CATIA, CASTEP, SolidWorks

Experimental Techniques

X-ray Diffraction (XRD), FTIR, FESEM, Transmission Electron Microscopy, UV-Visible Spectroscopy, Vibrating Sample Magnetometer, Universal Testing Machine, TGA, DTA

Theoretical Techniques

Rietveld Analysis, DFT Investigation, Stress and Displacement Analysis

🔬 Research Interests

Wearable Smart TextilesBiomedicalNanomaterials & NanomechanicsSemiconductor Electro-physicsAdditive ManufacturingThin Film MagnetismFirst-Principle DFT StudyPhotovoltaics

Strengths for the Award:

  • Research Contributions: The researcher should have a strong portfolio of impactful publications, such as high-quality journal articles, conference papers, or patents, that have significantly contributed to their field.
  • Innovation: The researcher’s work should demonstrate a high level of innovation, leading to new discoveries or advancements in technology, methodology, or understanding in their area of expertise.
  • Collaboration and Leadership: The researcher should have a track record of leading or collaborating on interdisciplinary projects, demonstrating their ability to work with a diverse range of experts.
  • Recognition and Awards: Previous recognition through awards, grants, or invitations to speak at conferences can highlight the researcher’s influence and reputation in their field.
  • Impact on Society: The research should have a tangible impact on society, such as applications in industry, policy changes, or contributions to solving real-world problems.

Areas for Improvement:

  • Broader Impact: While the researcher may have made significant contributions to a specific field, they may need to expand the reach of their work to have a broader impact across multiple disciplines.
  • Communication and Outreach: The ability to communicate research findings to a non-specialist audience, including the general public, policymakers, or industry stakeholders, is increasingly important. Improvement in this area could enhance the visibility and impact of their work.
  • Diversity and Inclusion: The researcher could focus more on mentoring underrepresented groups in their field or engaging in initiatives that promote diversity and inclusion in science and research.
  • Sustainability and Ethics: Depending on the research field, the researcher may need to incorporate more sustainable practices or address ethical considerations in their work.

✍️Publications Top Note :

Cellulose Fiber from Jute and Banana Fiber:

Publication: “Physical properties of isolated cellulose fiber from jute and banana fiber through kraft pulping: Potential applications in packaging and regenerated fibers.”

Journal: SPE Polymers (2024).

Focus: Investigation of the physical properties of cellulose fibers derived from jute and banana through kraft pulping. The study explores potential applications in packaging and the development of regenerated fibers.

Electromagnetic Properties of Al3+ Substituted Ni–Co Ferrites:

Publication: “Rietveld refined structural and sintering temperature dependent electromagnetic properties of Al3+ substituted Ni–Co ferrites prepared through sol–gel auto combustion method for high-frequency and microwave devices.”

Journal: Journal of Materials Science: Materials in Electronics (2024).

Focus: This research delves into the electromagnetic properties of Al3+ substituted Ni-Co ferrites, emphasizing their application in high-frequency and microwave devices.

Triboelectric Nanogenerators:

Publication: “Carbon-based Textile structured Triboelectric Nanogenerators for Smart Wearables.”

Status: Preprint (2024).

Focus: Development of carbon-based textile triboelectric nanogenerators aimed at powering smart wearable devices.

Magnetic and Optoelectronic Properties of Ni-Cu Spinel Ferrites:

Publication: “Magnetic, optoelectronic, and rietveld refined structural properties of Al3+ substituted nanocrystalline Ni-Cu spinel ferrites: An experimental and DFT based study.”

Journal: Journal of Magnetism and Magnetic Materials (2023).

Focus: Study of the magnetic, optoelectronic, and structural properties of Ni-Cu spinel ferrites, including experimental and theoretical (DFT) approaches.

Dielectric and Electrical Transport in Ni-Cu Spinel Ferrites:

Publication: “Structural, dielectric, and electrical transport properties of Al3+ substituted nanocrystalline Ni-Cu spinel ferrites prepared through the sol–gel route.”

Journal: Results in Physics (2022).

Focus: Analysis of dielectric and electrical transport properties in Al3+ substituted Ni-Cu spinel ferrites synthesized using the sol-gel method.

Structural and Magnetic Properties of Ni-Zn Ferrites:

Publication: “Structural, magnetic, and electrical properties of Ni0.38−xCu0.15+yZn0.47+x−yFe2O4 synthesized by sol–gel auto-combustion technique.”

Journal: Journal of Materials Science: Materials in Electronics (2021).

Conclusion:

  • Suitability for the Award: Based on the evaluation of strengths and areas for improvement, the researcher appears highly suitable for the “Best Researcher Award.” Their significant contributions to their field, coupled with a track record of innovation and leadership, make them a strong candidate.
  • Final Recommendation: While the researcher is highly qualified, they could further enhance their candidacy by expanding the impact of their work, engaging more with the broader community, and contributing to initiatives that promote diversity and sustainability in research.