SAMANTH KOKKILIGADDA | Energy and Catalysis | Best Researcher Award

Dr. SAMANTH KOKKILIGADDA | Energy and Catalysis | Best Researcher Award

Postdoctoral Researcher, Sungkyunkwan University, South Korea

Dr. Samanth Kokkiligadda is a research professor in Chemical Engineering at Sungkyunkwan University, South Korea, specializing in sustainable energy solutions. With a Ph.D. in Physics, his expertise spans nanomaterials, energy storage, and biomass conversion. His work integrates biopolymers and flexible films to advance eco-friendly supercapacitors and photocurrent applications. Dr. Kokkiligadda has received prestigious awards, including the SKKU Innovation Research Fellowship and a gold medal in Chemistry. Proficient in nanomaterials functionalization, quantum dots, and electrochemical techniques, he contributes significantly to material synthesis and energy conversion research.

Profile

orcid

🎓 Education

Ph.D. in Physics (2019–2023), Sungkyunkwan University, South Korea 🏅 Dissertation: “Nanomaterial-embedded DNA Nanostructures for Photocurrent and Supercapacitors.” Awarded the Best SKKU Innovative Research Award. M.Sc. in Physics (2016–2018), P.B. Siddhartha College of Arts & Sciences, India 🎓 Specialization in Condensed Matter Physics with an 80% aggregate score. B.Sc. in M.P.C. (2013–2016), Krishna University, India 🏆 Graduated with 91.3%, earning a gold medal in Chemistry.

💼 Experience

BK21+ Postdoctoral Researcher, Sungkyunkwan University, South Korea (Present) 🔬 Researching DNA-based nanostructures for photocurrent and supercapacitor applications. Developing high-performance biopolymer-based energy storage devices. Graduate Researcher, Sungkyunkwan University, South Korea (2019–2023) 🧪 Conducted extensive studies on functional nanomaterials, quantum dots, and MXenes. Specialized in electrode synthesis for energy storage applications.

🏆 Awards & Honors 

SKKU Innovation Research Fellowship (BK21), 2022 🌟 All India 14th Rank, UGC Merit Scholarship, 2016-17 🏅Pratibha Award & Gold Medal in Chemistry, Krishna University, 2016 🏆 KU-SET 17th Rank, Andhra Pradesh University Entrance Test 🎖 2nd Prize in Photography, Cognition Nalanda University, 2018 📸 1st Prize in Quiz, Andhra Pradesh Librarian Association, Avanigadda 🏅

🔬 Research Focus 

Dr. Kokkiligadda’s research focuses on nanomaterials for energy storage and conversion. His work integrates DNA-based nanostructures, biopolymer synthesis, and flexible energy storage films. He explores quantum dots, MXenes, and hybrid biomaterials to develop high-performance, eco-friendly supercapacitors and photocurrent devices. His expertise spans scanning electron microscopy, spectroscopy techniques, thermal vapor deposition, and electrode fabrication for batteries and PEC applications.

Publications

“Nanomaterial-embedded DNA Nanostructures for Photocurrent and Supercapacitors” 🔋

“Synthesis of Biomass-based Hybrid Nanomaterials for Sustainable Energy Conversion” 🌱

“Functionalization of Quantum Dots for High-Performance Energy Devices” ⚡

“MXenes in Flexible Supercapacitors: A Novel Approach” 🏭

“Electrode Fabrication Techniques for Advanced Energy Storage” ⚙️

“Innovative DNA Nanostructures for Photovoltaic Applications”

Conclusion:

Samanth Kokkiligadda is a highly deserving candidate for the Best Researcher Award due to his exceptional contributions to nanomaterials, energy storage, and sustainable innovations. With his expertise and growing recognition, he has the potential to become a key figure in the future of green energy research. Strengthening collaborations and increasing high-impact publications will further solidify his standing as a top-tier researcher.

Danish Khan | Energy | Best Scholar Award

Dr. Danish Khan | Energy | Best Scholar Award

Assistant Professor at Shenzhen Technology University, China

🎓 A dedicated scientist and educator with expertise in renewable energy and electrical engineering, specializing in perovskite solar cells. 🌱 Holds diverse academic and professional experience in Pakistan and China, demonstrating a passion for innovative research and teaching. 💡 A dedicated scientist and educator with expertise in renewable energy and electrical engineering, specializing in perovskite solar cells. 🌱 Holds diverse academic and professional experience in Pakistan and China, demonstrating a passion for innovative research and teaching. 💡

Publication Profile

scholar

Education🎓 

PhD in Renewable Energy (2014.09-2019.06): Research focus on perovskite organic photovoltaics at North China Electric Power University. Master’s in Electrical Engineering (2012.09-2014.06): Specialization in insulation materials at North China Electric Power University Undergraduate in Electrical Engineering (2007.09-2011.06): Focused on insulating materials at COMSATS University, Pakistan.

Experience👩‍🏫

Scientist in Materials Perovskite R&D (2023.03-Present): Researching perovskite solar cells. Postdoctoral Researcher (2021.03-2023.02): Worked on doped HTMs and titanium ore solar cells at Southern University of Science and Technology. Assistant Professor (2019.09-2021.02): Taught electrical engineering and materials courses at Indus University, Pakistan, and served as part-time acting director.

Awards and Honors🔍

HEC Pakistan Certified Doctoral Supervisor.  Guest speaker at MEIE2020 and the 4th Symposium on Optoelectronics Materials and Devices.  Reviewer for SCI journals.

Research Focus🌞

Specializes in perovskite solar cells, focusing on stability, efficiency, and advanced doped HTMs.  Expertise in materials characterization using NMR, XRD, SEM, TEM, and computational tools like Materials Studio and MATLAB.

Publications 📖

📘 Competitive assessment of South Asia’s wind power industry: SWOT analysis and value chain combined model – Energy Strategy Reviews, 2020. Cited: 82.

🌞 Dopant-free phthalocyanine hole conductor for stable perovskite solar cells with 23% efficiency – Advanced Functional Materials, 2022. Cited: 67.

📊 Photovoltaic power forecasting using Elman Neural Network – IEEE Conference, 2017. Cited: 43.

🧪 Nexuses Between Chemical Design and Small Molecule Hole Transport Materials – Small, 2023. Cited: 41.

🔬 Dielectric properties of transformer oil-based silica nanofluids – IEEE, 2015. Cited: 40.

⚛️ Thiophene-functionalized phthalocyanine isomers for defect passivation in perovskite solar cells – Journal of Energy Chemistry, 2022. Cited: 36.

🏭 Incorporation of carbon nanotubes in organic solar cells – Ain Shams Engineering Journal, 2021. Cited: 36.

🔋 Design and performance analysis of PV grid-tied systems with energy storage – Int. J. Electrical and Computer Engineering, 2021. Cited: 32.

🌟 Improving optical properties of SnO₂ nanoparticles via Ni doping – Current Research in Green and Sustainable Chemistry, 2021. Cited: 30.

🌌 Conjugated linker-boosted self-assembled monolayers for perovskite solar cells – Joule, 2024. Cited: 29.

🌐 Hybrid power forecasting with neural networks and air quality index – Int. J. Photoenergy, 2017. Cited: 26.

🧾 Phthalocyanine in perovskite solar cells: A review – Materials Chemistry Frontiers, 2023. Cited: 22.

🏗️ Ion-Dipole interaction for inverted perovskite solar cells – Advanced Functional Materials, 2024. Cited: 20.

🌞 Charge transport-free np homojunction perovskite solar cells – Solar Energy, 2022. Cited: 20.

Conclusion

This individual is highly suitable for the Research for Best Scholar Award due to their exceptional academic credentials, impactful research contributions in renewable energy, and proven leadership skills in both academia and research. Their ability to bridge theoretical knowledge with practical applications in perovskite solar cells aligns with the award’s focus on scholarly excellence.

To further strengthen their candidacy, they could diversify their research focus, pursue interdisciplinary collaborations, and secure significant grants. With continued professional growth, this individual is well-positioned to make transformative contributions to academia and renewable energy innovation.