Hui Wang | nano functional materials | Best Researcher Award

Assoc. Prof. Dr Hui Wang | nano functional materials | Best Researcher Award

Deputy Director, Soochow University, China

πŸ‘©β€πŸ« Associate Professor at Soochow University’s National Engineering Laboratory for Modern Silk, specializing in πŸ§ͺ nano- and micro-scale biomaterials, surface interfaces, and biomaterial surface properties. Earned her πŸŽ“ Ph.D. in Physical Chemistry from Xiamen University and conducted πŸ”¬ postdoctoral research at the National University of Singapore. With πŸ“š 20+ publications in high-impact journals, she has received prestigious research grants and awards for her contributions to πŸ” biomaterials science and textile engineering.

Profile

scopus

Education πŸŽ“

πŸ“ Ph.D. in Physical Chemistry – Xiamen University, China (2003-2009)Β B.Sc. in Chemistry – Xiamen University, China (1999-2003)

Experience πŸ’Ό

πŸ“ Research Fellow – National University of Singapore, Department of Physics (2009-2010) πŸ“ Associate Professor – Soochow University (2011-Present)

Awards & Honors πŸ†

πŸ₯ˆ Second Prize – Fujian Science & Technology Progress Award (2009) πŸ₯ˆ Second Prize – Xiamen Science & Technology Progress Award (2009)

Research Focus πŸ”¬

πŸ§ͺ Nano- and micro-scale biomaterials | 🌊 Surface & interface science | βš™οΈ Biomaterial surface properties & biological interactions

Publications

Ultrafast Deposition Kinetics in Bi-Tailored Core-Shell Carbon Nanofibers for Sodium Metal Batteries ⚑
πŸ“ Angewandte Chemie – International Edition, 2025
πŸ“š Co-authors: M. Yuan, H. Wang, T. Xu, X. Bai, H. Park

2️⃣ Versatile Thermally Activated Delayed Fluorescence (TADF) for Photodynamic Therapy & NIR Electroluminescence πŸ’‘
πŸ“ ACS Nano, 2025
πŸ“š Co-authors: H. Wang, Y. Gao, J. Chen, C.S. Lee, X. Zhang

3️⃣ NiSeβ‚‚-MoSeβ‚‚ Heterojunctions on N-Doped Porous Carbon for Electrocatalytic Water Splitting πŸ’§
πŸ“ Journal of Colloid and Interface Science, 2025
πŸ“š Co-authors: H. Zhou, D. Kong, N. Chu, Y. Wang, T. Xu

4️⃣ Stepwise One-Shot Borylation for High-Efficiency Yellow-Green OLEDs (EQE > 40%) πŸ–₯️
πŸ“ Angewandte Chemie – International Edition, 2025
πŸ“š Co-authors: X. Xiong, T. Chen, R. Walia, K. Wang, X. Zhang

5️⃣ D–A Type Red TADF Molecules for High-Efficiency Red/NIR OLEDs 🎨
πŸ“ Advanced Functional Materials, 2025
πŸ“š Co-authors: H. Wang, S. Lin, J. Chen, K. Wang, X. Zhang

6️⃣ Organoboron-Nitrogen-Carbonyl Hybrid Emitters for High-Performance Red OLEDs πŸ”΄
πŸ“ Advanced Optical Materials, 2025
πŸ“š Co-authors: Y. Cheng, R. Walia, T. Zhang, K. Wang, X. Zhang

7️⃣ Donor–Acceptor & MR-TADF Core Integration for Outstanding Electroluminescence 🌟
πŸ“ Advanced Materials, 2024 (Open Access)
πŸ“š Co-authors: D. Chen, H. Wang, D. Sun, X. Zhang, E. Zysman-Colman

8️⃣ Ultra-High Photothermal Conversion Diradical Polymer for NIR-II Photo-Immunotherapy πŸ₯
πŸ“ Nano (Open Access), 2024
πŸ“š Co-authors: Y. Gao, Y. Liu, X. Li, S. Li, X. Zhang

Conclusion

Dr. Hui Wang is a strong candidate for the Best Researcher Award, given his expertise in nanomaterials, biomaterials, and surface/interface science. His high-impact publications, academic experience, and recognition in China make him highly deserving. Strengthening global collaborations, patents, and leadership in large-scale projects would further solidify his profile for international-level awards.

Huajie Luo | Functional materials | Best Researcher Award

Assoc. Prof. Dr Huajie Luo | Functional materials | Best Researcher Award

Scientific researcher at University of science and technology Beijing, China

πŸ‘¨β€πŸ”¬ Huajie Luo (b. 1991, Beijing) is an Associate Professor at the University of Science and Technology Beijing (USTB). He specializes in materials science, particularly in the design and performance regulation of ferroelectric ceramics and thin films. His work bridges atomic structures with macroscopic properties like energy storage and electrostrain. Luo has published extensively in top-tier journals and holds multiple patents. He is known for applying advanced techniques like synchrotron XRD and neutron diffraction to study crystal structures. πŸŒπŸ“š

Pofile

scholar

EducationπŸŽ“

Huajie Luo earned a Master’s and Ph.D. in Physical Chemistry from the University of Science and Technology Beijing (USTB), where he also completed his postdoctoral research. His doctoral research focused on ferroelectric materials and structure-property relationships. His expertise spans from theoretical modeling to experimental synthesis. 🌟

ExperienceπŸ’Ό

Luo is currently an Associate Professor at USTB (since 2023) and was a postdoctoral researcher at USTB’s Department of Physical Chemistry (2022-2023). He has participated in significant national research projects and supervised multiple funded initiatives. His broad expertise includes advanced material characterization and design for high-performance devices. πŸ”¬βš™οΈ

Awards and HonorsπŸ…Β 

Luo has received numerous accolades, including selection for the Postdoctoral Innovative Talent Program and the 2024 Outstanding Postdoctoral Award from USTB. He also earned the 2024 Wiley China High Contribution Author Award and serves on the Youth Editorial Board of Microstructures. πŸ†πŸ“‘

Research FocusπŸ”¬

Luo’s research focuses on the design and performance of ferroelectric ceramics and thin films, particularly their macroscopic properties such as electrostrain and energy storage. He uses advanced techniques like synchrotron XRD and neutron diffraction for structural analysis. His work aims to enhance energy storage efficiency and piezoelectric performance. ⚑πŸ§ͺ

Publications

“Chemical design of Pb-free relaxors for giant capacitive energy storage”
Authors: H. Liu, Z. Sun, J. Zhang, et al.
Journal of the American Chemical Society, 145 (21), 11764-11772, 2023

Focuses on the chemical design of lead-free relaxors for large capacitive energy storage.

“Superior capacitive energy-storage performance in Pb-free relaxors with a simple chemical composition”
Authors: Z. Sun, J. Zhang, H. Luo, et al.
Journal of the American Chemical Society, 145 (11), 6194-6202, 2023

Explores the capacitive energy storage performance in Pb-free relaxors with a simplified chemical structure.

“Achieving giant electrostrain of above 1% in (Bi,Na)TiO3-based lead-free piezoelectrics via introducing oxygen-defect composition”
Authors: H. Luo, H. Liu, H. Huang, et al.
Science Advances, 9 (5), eade7078, 2023

Focuses on achieving large electrostrain in (Bi,Na)TiO3-based piezoelectrics with oxygen-defect composition.

“Simultaneously enhancing piezoelectric performance and thermal depolarization in lead-free (Bi, Na) TiO3-BaTiO3 via introducing oxygen-defect perovskites”
Authors: H. Luo, H. Liu, S. Deng, et al.
Acta Materialia, 208, 116711, 2021

Investigates the enhancement of piezoelectric and thermal depolarization properties in (Bi, Na) TiO3-BaTiO3 ceramics.

“Local chemical clustering enabled ultrahigh capacitive energy storage in Pb-free relaxors”
Authors: H. Liu, Z. Sun, J. Zhang, et al.
Journal of the American Chemical Society, 145 (35), 19396-19404, 2023

Highlights the role of local chemical clustering in enhancing energy storage performance in Pb-free relaxors.

Conclusion

In conclusion, Huajie Luo exemplifies the qualities sought after in a Best Researcher Award recipientβ€”exceptional academic productivity, innovative research, and a clear impact on the scientific community. His continued success in both academic and industrial collaborations will likely yield even more groundbreaking results, making him a strong contender for this prestigious award.

Bingcheng Yi | Bioinspired Functional Surfaces | Best Researcher Award

Mr. Bingcheng Yi | Bioinspired Functional Surfaces Β | Best Researcher Award

Associated professor at University of Health and Rehabilitation Sciences, chinaΒ 

Bingcheng Yi is an Associated Professor at the University of Health and Rehabilitation Sciences, China. With expertise in biomaterials and tissue engineering, Dr. Yi has made significant contributions to the development of biomimetic materials for tissue regeneration. His research focuses on vascular tissue engineering, modification of biomaterials, and cell-matrix interactions [1].

Publication Profile

scopus

Education πŸŽ“

PhD in Biomaterials, Donghua University, 2020 πŸ‘©β€πŸŽ“Master in Biochemical Engineering, Donghua University, 2016 πŸ§ͺBachelor in Food Quality and Safety, Hainan University, 2013 🍽️

Experience πŸ’Ό

2022–Present: Associate Professor, University of Health and Rehabilitation Sciences 🏫2020–2022: Postdoc, Shanghai Ninth People’s Hospital, Shanghai Jiao Tong University πŸ₯2016–2020: Research Assistant, Donghua University πŸ”¬

Awards and Honors πŸ…πŸ†

Dr. Zhang has received numerous awards, including the National Scholarship for Graduate Students (2019), Best Research Presentation Award at the International Biomaterials Conference (2020), and an Excellence in Innovation Award from the University of Health and Rehabilitation Sciences (2022).

Research Focus πŸ”¬

His research focuses on vascular tissue engineering, developing advanced biomaterials like nanofiber hydrogels to regulate cell behaviors, mechanisms of cell-matrix interactions in tissue remodeling, and designing biomimetic materials for effective tissue regeneration. πŸ’‘

Publications πŸ“–

Bacterial cellulose-based scaffold modified with anti-CD29 antibody to selectively capture urine-derived stem cells for bladder repair
Authors: Shao, T., Yan, M., Liu, R., Yi, B., Zhou, Q.
Journal: Carbohydrate Polymers
Year: 2025, Volume 352, Article 123150
Summary: The article focuses on a bacterial cellulose-based scaffold modified with anti-CD29 antibody for selectively capturing urine-derived stem cells aimed at bladder repair.

Fucoidan-derived carbon dots as nanopenetrants of blood-brain barrier for Parkinson’s disease treatment
Authors: Han, M., Yi, B., Song, R., Shen, X., Zhou, Q.
Journal: Journal of Colloid and Interface Science
Year: 2025, Volume 680, pp. 516–527
Summary: This study investigates fucoidan-derived carbon dots as nanocarriers for penetrating the blood-brain barrier to treat Parkinson’s disease.

ADSCC-CM-Induced Keratin Hydrogel-Based Bioactive Microneedle Patch Containing Triamcinolone Acetonide for the Treatment of Pathological Scar
Authors: Li, C., Yi, B., Xu, Q., Zhou, Q., Wang, Z.
Journal: Advanced Functional Materials
Year: 2024, Volume 34(46), Article 2400457
Summary: This research presents a keratin hydrogel-based microneedle patch, induced by ADSCC-conditioned media, for the treatment of pathological scars.

Mechanical loading on cell-free polymer composite scaffold enhances in situ regeneration of fully functional Achilles tendon in a rabbit model
Authors: Wang, W., Lin, X., Tu, T., Zhang, P., Liu, W.
Journal: Biomaterials Advances
Year: 2024, Volume 163, Article 213950
Summary: The article discusses the effects of mechanical loading on a cell-free polymer scaffold, promoting tendon regeneration in a rabbit model.

Piezoelectrically-enhanced composite membranes mimicking the tendinous electrical microenvironment for advanced tendon repair
Authors: Wang, W., Wang, P., Li, Q., Liu, W., Wang, X.
Journal: Nano Today
Year: 2024, Volume 57, Article 102381
Summary: This study explores the use of piezoelectric composite membranes for tendon repair by mimicking the electrical microenvironment.

Ecofriendly and high-performance flexible pressure sensor derived from natural plant materials for intelligent audible and silent speech recognition
Authors: Zheng, X., Yi, B., Zhou, Q., Li, Y., Li, Y.
Journal: Nano Energy
Year: 2024, Volume 126, Article 109701
Summary: The article presents a flexible pressure sensor made from natural plant materials, intended for speech recognition applications.

Sulfated Chitosan-Modified CuS Nanocluster: A Versatile Nanoformulation for Simultaneous Antibacterial and Bone Regenerative Therapy in Periodontitis
Authors: Chen, X., Huang, N., Wang, D., Yuan, C., Zhou, Q.
Journal: ACS Nano
Year: 2024, Volume 18(22), pp. 14312–14326
Summary: This study introduces a sulfated chitosan-modified CuS nanocluster for combined antibacterial and bone regeneration therapy in periodontitis.

Polylysine-derived carbon quantum dots modulate T lymphocyte responses for periodontitis treatment
Authors: Deng, X., Yi, B., Guo, F., Yuan, C., Zhou, Q.
Journal: Materials and Design
Year: 2024, Volume 241, Article 112975
Summary: The research highlights how polylysine-derived carbon quantum dots can modulate T lymphocyte responses to treat periodontitis.

Physiological cyclic stretching potentiates the cell–cell junctions in vascular endothelial layer formed on aligned fiber substrate
Authors: Shi, Y., Li, D., Yi, B., Xu, T., Zhang, Y.
Journal: Biomaterials Advances
Year: 2024, Volume 157, Article 213751
Summary: This paper explores how cyclic stretching can enhance cell–cell junctions in a vascular endothelial layer on an aligned fiber substrate.

The Combination of Aligned PDA-Fe@PLCL Conduit with Aligned GelMA Hydrogel Promotes Peripheral Nerve Regeneration
Authors: Wang, P., You, J., Liu, G., Yi, B., Huang, Q.
Journal: Advanced Healthcare Materials
Year: 2024 (in press)
Summary: This research proposes a combined conduit and hydrogel approach to promote peripheral nerve regeneration.

Conclusion

The candidate is highly deserving of the Best Researcher Award due to their solid academic background, exceptional research contributions in biomaterials, and the promising potential for their findings to shape the future of regenerative medicine and tissue engineering. While areas like interdisciplinary collaboration, public engagement, and commercialization could be strengthened, their work shows significant potential for continued innovation. Given their drive and track record of excellence, they are poised to make enduring contributions to both academic and clinical fields.

Dandan Cui | 2D materails | Best Researcher Award

Ms.Dandan Cui | 2D materails | Best Researcher Award

Assistant research fellow atΒ  Beihang University, China

🌟 Name: Dr. Dandan Cui πŸŽ“ Title: Ph.D. in Physics 🏫 Current Position: Assistant Professor, Beihang University (2020–Present) πŸ“š Expertise: Two-dimensional materials, surface physicochemistry, and photocatalytic materials. πŸ“– Publications: Author of highly cited works in journals such as Journal of Materials Chemistry A and ACS Sustainable Chemistry & Engineering. πŸ’‘ Contribution: Pioneered advancements in photocatalytic materials, vacancy engineering, and photoelectrocatalysis.

Professional Profiles:

EducationπŸŽ“

Ph.D. in Physics: Focused on surface physicochemistry and advanced materials research. πŸ“– Master’s Degree: Specialization in material engineering with research on photocatalysts. 🏫 Undergraduate Degree: Studied Physics with high distinction, fostering a strong foundation in theoretical and experimental science. πŸ“˜ Achievements: Graduated with honors and consistently recognized for academic excellence throughout studies.

Experience 🏫

2020–Present: Assistant Professor at Beihang University, advancing research in photocatalytic materials. πŸ”¬ Collaborative Research: Published groundbreaking studies on BiOCl and BiVO4, influencing the field of material science. πŸ“˜ Leadership Roles: Mentored graduate students and coordinated multi-disciplinary research projects. 🌐 Outreach: Active participation in international conferences and workshops on advanced materials.

Awards and Honors πŸ…

Highly Cited Paper Award: For influential research in Journal of Materials Chemistry A. πŸŽ–οΈ Young Researcher Award: Recognized for contributions to photocatalysis and material design. πŸ† Research Excellence Award: Honored by Beihang University for innovative achievements. πŸ“œ Invited Reviewer: Prestigious journals in materials science and chemistry.

Research Focus πŸ§ͺ

Photocatalytic Materials: Design and development of novel semiconductors for energy applications. πŸŒ€ Two-Dimensional Materials: Exploration of physicochemical properties for enhanced functionality. πŸ’‘ Vacancy Engineering: Leveraging defects for improved photocatalytic and photoelectrochemical properties. πŸ”¬ Surface Wettability: Investigating its role in photoelectrocatalytic oxygen evolution. 🌍 Sustainability: Advancing green energy technologies through material innovation.

✍️Publications Top Note :

Combination of nanoparticles with single-metal sites synergistically boosts co-catalyzed formic acid dehydrogenation
πŸ“ Authors: Shi, Y.; Luo, B.; Sang, R.; Beller, M.; Li, X.
πŸ“š Journal: Nature Communications, 2024, 15(1), 8189.
Focus: Combines nanoparticles with single-metal sites for formic acid dehydrogenation, enhancing catalytic performance.

Emerging Amorphized Metastable Structures to Break Limitations of 2D Materials for More Promising Electrocatalysis
πŸ“ Authors: Gao, Y.; Liang, H.; Xu, H.; Huang, W.; Lin, L.
πŸ“š Journal: ACS Energy Letters, 2024, 9(8), 3982–4002.
Focus: Reviews metastable 2D materials for improved electrocatalysis.

Emerging Advances of Liquid Metal toward Flexible Sensors
πŸ“ Authors: Qin, J.; Cui, D.; Ren, L.; Shi, Y.; Du, Y.
πŸ“š Journal: Advanced Materials Technologies, 2024, 9(14), 2300431.
Focus: Discusses liquid metal applications in flexible sensors.

Cobalt-Doped Aluminum Aerogels as Photocatalyst Fabricated by a Liquid Metal Reaction Method
πŸ“ Authors: Xu, Q.; Lv, Z.; Zhu, Y.; Hao, W.; Du, Y.
πŸ“š Journal: Journal of Chemical Education, 2024, 101(7), 2850–2856.
Focus: Explores cobalt-doped aerogels for photocatalysis.

Synchronous Pressure-Induced Enhancement in the Photoresponsivity and Response Speed of BiOBr
πŸ“ Authors: Yue, L.; Cui, D.; Tian, F.; Du, Y.; Liu, B.
πŸ“š Journal: Acta Materialia, 2024, 263, 119529.
Focus: Demonstrates enhanced photocatalytic properties of BiOBr under pressure.

Synergistic Surface Engineering of BiVO4 Photoanodes for Improved Photoelectrochemical Water Oxidation
πŸ“ Authors: Wang, S.; Shi, Z.; Du, K.; Du, Y.; Hao, W.
πŸ“š Journal: Small Methods, 2024.
Focus: Investigates BiVO4 photoanodes for water oxidation.

Constructing 2D Bismuth-Based Heterostructure for Highly Efficient Photocatalytic CO2 Reduction
πŸ“ Authors: Xu, R.-H.; Jiang, H.-Y.; Cui, D.-D.; Hao, W.-C.; Du, Y.
πŸ“š Journal: Tungsten, 2024.
Focus: Designs bismuth-based heterostructures for CO2 reduction.

Atomically Dispersed Cobalt/Copper Dual-Metal Catalysts for Synergistically Boosting Hydrogen Generation from Formic Acid
πŸ“ Authors: Shi, Y.; Luo, B.; Liu, R.; Beller, M.; Li, X.
πŸ“š Journal: Angewandte Chemie – International Edition, 2023, 62(43), e202313099.
Focus: Enhances hydrogen generation using dual-metal catalysts.

Bismuth-Based Semiconductor Heterostructures for Photocatalytic Pollution Gases Removal
πŸ“ Authors: Wang, Y.; Du, K.; Xu, R.; Hao, W.; Du, Y.
πŸ“š Journal: Current Opinion in Green and Sustainable Chemistry, 2023, 41, 100824.
Focus: Reviews bismuth-based materials for gas pollution removal.

Operando Reconstruction-Induced CO2 Reduction Activity and Selectivity for Cobalt-Based Photocatalysis
πŸ“ Authors: Zhao, K.; Pang, W.; Jiang, S.; Fu, D.; Zhao, H.
πŸ“š Journal: Nano Research, 2023, 16(4), 4812–4820.
Focus: Studies cobalt-based photocatalysis for CO2 reduction.

Conclusion

Dr. Dandan Cui is a highly suitable candidate for the Best Researcher Award, given her outstanding contributions to two-dimensional materials and photocatalytic material science. Her impactful publications, innovative research, and leadership in collaborative projects make her a strong contender. To further enhance her candidacy, she could expand her recognition, secure research funding, and increase her interdisciplinary and societal contributions. With her trajectory, she is poised to make even more significant advances in her field and inspire future researchers.