Xiaoqing high | Analysis for Hydrology |Young Scientist Award

Prof. Xianfeng Li | All solid state lithium battery | Young Scientist Award

researcher at Dalian Institute of Chemical Physics, Chinese Academy of Sciences, China

A distinguished researcher in chemical engineering, specializing in energy storage and battery technologies, with extensive contributions to solid-state lithium batteries and lithium-sulfur systems. Currently a Researcher at the Dalian Institute of Chemical Physics (DICP), Chinese Academy of Sciences, they have authored over 100 high-impact papers with an H-index of 51 and 8,900+ citations. Recognized globally, they are part of the world’s top 2% of scientists (2022-2024).

Publication Profile

scopus

šŸŽ“ Education

šŸ… 2013-2018: Doctor of Engineering, Chemical Engineering, DICP, Chinese Academy of Sciences (Supervisor: Zhang Huamin) 2016-2018: Joint Ph.D. Trainee, University of Western Ontario (Mentor: Sun Xueliang) Ā 2009-2013: Bachelor of Engineering, Anhui University (Supervisor: Zhou Hongping) – GPA 3.64/4.0, ranked 2/86

🧪 Experience

šŸ”¬ 2022-Present: Researcher, DICP, Chinese Academy of Sciences 2021-2022: Associate Researcher, DICP 2018-2021: Postdoctoral Fellow, University of Western Ontario (Supervisor: Sun Xueliang Ā 2013-2018: PhD Researcher, DICP Ā 2016-2018: Joint PhD, University of Western Ontario

šŸ† Awards and Honors

⭐ 2023: Outstanding Youth of Liaoning Province 2022: Special Talent Program, Chinese Academy of Sciences Ā 2022: “Zhang Dayu” Young Scholar Ā 2020: Mitacs Elevate Fellowship 2018: Yanchang Petroleum Outstanding Doctoral Scholarship Ā 2017: National Scholarship Ā 2017: “Lu Jiaxi” Outstanding Graduate Award

šŸ”‹ Research Focus

⚔ Solid-state lithium battery materials and device development  Lithium-sulfur batteries: cathode design, ion/electron transport Structural design for lithium dendrite inhibitio  Metal sulfide electrocatalysis for high-load batteries  High-voltage/high-power battery optimization

Publications šŸ“–

1. šŸ“ Improved sodium storage performance via regulating surface oxygen containing functional groups and microstructure of lignin-derived hard carbon

Authors: Mirza, S., Han, J., Ying, G., Zheng, Q., Li, X.

Journal: Journal of Energy Storage, 2025, 107, 114969

Citations: 0

2. 🧪 Zinc-Ferricyanide Flow Batteries Operating Stably under āˆ’10 °C

Authors: Zhi, L., Liao, C., Xu, P., Yuan, Z., Li, X.

Journal: Angewandte Chemie International Edition, 2024, 63(51), e202412559

Citations: 1

3. šŸ”¬ In Situ Molecular Reconfiguration of Pyrene Redox-Active Molecules for High-Performance Aqueous Organic Flow Batteries

Authors: Ge, G., Li, F., Yang, M., Zhang, C., Li, X.

Journal: Advanced Materials, 2024, 36(49), 2412197

Citations: 0

4. ⚔ Unveiling Intercalation Chemistry via Interference-Free Characterization Toward Advanced Aqueous Zinc/Vanadium Pentoxide Batteries

Authors: Li, X., Xu, Y., Chen, X., Li, X., Fu, Q.

Journal: Advanced Science, 2024, 11(40), 2405134

Citations: 1

5. 🌱 Air-stable naphthalene derivative-based electrolytes for sustainable aqueous flow batteries

Authors: Zhao, Z., Li, T., Zhang, C., Li, S., Li, X.

Journal: Nature Sustainability, 2024, 7(10), 1273–1282

Citations: 0

6. šŸ”‹ Surface passivation of lithium nitride as pre-lithiation reagents to enhance its air-stability

Authors: Liu, C., Zhang, H., Li, T., Yang, X., Li, X.

Journal: Journal of Energy Storage, 2024, 99, 113256

Citations: 0

7. āš™ļø Bismuth Single Atoms Regulated Graphite Felt Electrode Boosting High Power Density Vanadium Flow Batteries

Authors: Xing, F., Fu, Q., Xing, F., Liu, T., Li, X.

Journal: Journal of the American Chemical Society, 2024, 146(38), 26024–26033

Citations: 0

8. 🧱 A sub-10 μm Ion Conducting Membrane with an Ultralow Area Resistance for a High-Power Density Vanadium Flow Battery

Authors: Shi, M., Lu, W., Li, X.

Journal: ACS Applied Energy Materials, 2024, 7(18), 7576–7583

Citations: 5

9. šŸ”§ SEI/dead Li-turning capacity loss for high-performance anode-free solid-state lithium batteries

Authors: Yin, Q., Li, T., Zhang, H., Yang, X., Li, X.

Journal: Journal of Energy Chemistry, 2024, 96, 145–152

Citations: 1

10. 🧩 Carbon Nanotube Network Induces Porous Deposited MnO2 for High-Areal Capacity Zn/Mn Batteries

Authors: Liu, Y., Xie, C., Li, X.

Journal: Small, 2024, 20(35), 2402026

Citations: 2

Conclusion

Prof. Xianfeng Li exemplifies the qualities sought in candidates for the Research for Young Scientist Award. His pioneering work, prolific publication record, and prestigious accolades demonstrate his readiness to receive this honor. With minor enhancements in global collaborations and industry engagement, his career trajectory is poised to achieve even greater scientific breakthroughs.

Seyed Ali Hoseini | Lithium Ion Battery| Best Researcher Award

Mr. Seyed Ali Hoseini | Lithium Ion Battery | Best Researcher Award

Author atĀ  University of Tehran, Iran

Seyed Ali Hoseini is a doctoral candidate at the University of Tehran, specializing in nanotechnology engineering with a focus on nanoelectronics. He is a passionate researcher in the areas of lithium-ion batteries, conductive scaffolds, and high-k materials. Ali has contributed to several publications and is dedicated to advancing energy storage technologies. He holds top academic distinctions, having been ranked first in both his bachelor’s and master’s degrees. He is an active member of the Nano-fabricated Energy Devices Lab, where he works on improving battery and supercapacitor performance. His expertise in nanomaterials, electrochemistry, and simulation modeling is reflected in his work on advanced materials for energy devices.

Publication Profile

scholar

Education šŸŽ“

Ali Hoseini is pursuing a Ph.D. in Nanotechnology Engineering (Nanoelectronics) at the University of Tehran since 2020. He holds a master’s degree from Hakim Sabzevari University, where he ranked first in his class. His thesis focused on the design and simulation of pentacene-based field-effect transistors for bacteria detection. He completed his bachelor’s degree at Shahid Sattari Aeronautical University of Science, where he again ranked first. His academic excellence is reflected in a high GPA of 18.62/20 for his master’s and 18.86/20 for his bachelor’s.

Experience šŸ”¬

Seyed Ali Hoseini’s research experience spans several roles, primarily as a Research Assistant at the Nano-fabricated Energy Devices Lab at the University of Tehran. He focuses on material synthesis for lithium-ion batteries and has hands-on experience with electrode slurry preparation, cell assembly, and electrochemical testing. Ali has also worked on COMSOL simulation and modeling, as well as semiconductor simulations using Silvaco. He is proficient in thin-film fabrication techniques, including chemical vapor deposition and sputtering. His work extends to electrochemical characterization techniques like CV, GCD, and EIS.āš™ļøšŸ§Ŗ

Awards and HonorsšŸ†

Ali Hoseini has consistently excelled academically, achieving first place in both his bachelor’s and master’s degrees. His research contributions have led to multiple publications in high-impact journals. He has also received recognition for his innovative work in nanotechnology and energy storage. His outstanding academic and research achievements have earned him various awards, including a prestigious research assistantship at the University of Tehran.

Research FocusšŸ”¬

Seyed Ali Hoseini’s research focuses on improving the performance of lithium-ion batteries and supercapacitors using nanostructured scaffolds and high-k materials. His work aims to enhance the efficiency of energy storage devices by optimizing electrode materials and structural designs. He also investigates electrochemical processes to improve the durability and cycle life of batteries. His expertise extends to simulation and modeling, material synthesis, and electrochemical testing. Ali is committed to advancing sustainable energy storage solutions through cutting-edge nanotechnology. šŸ”‹

PublicationĀ  Top Notes

 

Design and Optimization of a CMOS Power Amplifier Using Innovative Fractional-Order Particle Swarm Optimization

Authors: S.A. Hosseini, A. Hajipour, H. Tavakoli

Journal:Ā Applied Soft Computing, 85, 105831 (2019)

Summary: This study focuses on the design and optimization of a CMOS power amplifier using fractional-order particle swarm optimization, an advanced optimization technique applied to improve amplifier performance. āš”šŸ”§

Lithium Demand and Cyclability Trade‐Off in Conductive Nanostructure Scaffolds in Terms of Different Tortuosity Parameters

Authors: S. Ali Hoseini, S. Mohajerzadeh, Z. Sanaee

Journal:Ā ChemElectroChem, e202400428 (2024)

Summary: This research explores the relationship between lithium demand and cyclability in conductive nanostructure scaffolds, focusing on how various tortuosity parameters affect performance in energy storage devices like lithium-ion batteries. šŸ”‹šŸ§Ŗ

طراحی و Ų“ŲØŪŒŁ‡ سازی زیست حسگر تؓخیص باکتری ایؓرؓیا Ś©ŁˆŁ„ŪŒ ŲØŲ§ استفاده Ų§Ų² ŲŖŲ±Ų§Ł†Ų²ŪŒŲ³ŲŖŁˆŲ± Ų§Ų«Ų± Ł…ŪŒŲÆŲ§Ł† Ų§Ų±ŚÆŲ§Ł†ŪŒŚ© ŲØŲ± روی Ł†ŪŒŁ… Ų±Ų³Ų§Ł†Ų§ŪŒ Ł¾Ł†ŲŖŲ§Ų³ŪŒŁ†ā€Ž

Authors: Ų³ŪŒŲÆŲ¹Ł„ŪŒ Ų­Ų³ŪŒŁ†ŪŒ, Ł…Ų­Ł…ŲÆŁ‡Ų§ŲÆŪŒ ؓاهرخ آبادی

Journal:Ā Ł…Ł‡Ł†ŲÆŲ³ŪŒ برق (دانؓکده ŁŁ†ŪŒ دانؓگاه تبریز), 50, 669-678 (2020)

Summary: This paper discusses the design and simulation of a biosensor for detecting Escherichia coli bacteria using an organic field-effect transistor based on pentacene semiconductor material. 🦠

Conclusion

Seyed Ali Hoseini is an outstanding candidate for theĀ Best Researcher Award, with a robust track record in innovative research in nanotechnology, energy storage, and electrochemical systems. His exceptional academic performance, cutting-edge contributions to lithium-ion battery technology, and interdisciplinary research skills make him a standout figure in his field. While there are areas for potential improvement, particularly in global collaborations and commercialization efforts, his research promises to drive forward both technological advancements and sustainable solutions in energy storage. Thus, he is highly deserving of recognition as a leading researcher in the field of energy and nanotechnology.