Xiaoqing high | Analysis for Hydrology |Young Scientist Award

Prof. Xianfeng Li | All solid state lithium battery | Young Scientist Award

researcher at Dalian Institute of Chemical Physics, Chinese Academy of Sciences, China

A distinguished researcher in chemical engineering, specializing in energy storage and battery technologies, with extensive contributions to solid-state lithium batteries and lithium-sulfur systems. Currently a Researcher at the Dalian Institute of Chemical Physics (DICP), Chinese Academy of Sciences, they have authored over 100 high-impact papers with an H-index of 51 and 8,900+ citations. Recognized globally, they are part of the world’s top 2% of scientists (2022-2024).

Publication Profile

scopus

🎓 Education

🏅 2013-2018: Doctor of Engineering, Chemical Engineering, DICP, Chinese Academy of Sciences (Supervisor: Zhang Huamin) 2016-2018: Joint Ph.D. Trainee, University of Western Ontario (Mentor: Sun Xueliang)  2009-2013: Bachelor of Engineering, Anhui University (Supervisor: Zhou Hongping) – GPA 3.64/4.0, ranked 2/86

🧪 Experience

🔬 2022-Present: Researcher, DICP, Chinese Academy of Sciences 2021-2022: Associate Researcher, DICP 2018-2021: Postdoctoral Fellow, University of Western Ontario (Supervisor: Sun Xueliang  2013-2018: PhD Researcher, DICP  2016-2018: Joint PhD, University of Western Ontario

🏆 Awards and Honors

⭐ 2023: Outstanding Youth of Liaoning Province 2022: Special Talent Program, Chinese Academy of Sciences  2022: “Zhang Dayu” Young Scholar  2020: Mitacs Elevate Fellowship 2018: Yanchang Petroleum Outstanding Doctoral Scholarship  2017: National Scholarship  2017: “Lu Jiaxi” Outstanding Graduate Award

🔋 Research Focus

⚡ Solid-state lithium battery materials and device development  Lithium-sulfur batteries: cathode design, ion/electron transport Structural design for lithium dendrite inhibitio  Metal sulfide electrocatalysis for high-load batteries  High-voltage/high-power battery optimization

Publications 📖

1. 📝 Improved sodium storage performance via regulating surface oxygen containing functional groups and microstructure of lignin-derived hard carbon

Authors: Mirza, S., Han, J., Ying, G., Zheng, Q., Li, X.

Journal: Journal of Energy Storage, 2025, 107, 114969

Citations: 0

2. 🧪 Zinc-Ferricyanide Flow Batteries Operating Stably under −10 °C

Authors: Zhi, L., Liao, C., Xu, P., Yuan, Z., Li, X.

Journal: Angewandte Chemie International Edition, 2024, 63(51), e202412559

Citations: 1

3. 🔬 In Situ Molecular Reconfiguration of Pyrene Redox-Active Molecules for High-Performance Aqueous Organic Flow Batteries

Authors: Ge, G., Li, F., Yang, M., Zhang, C., Li, X.

Journal: Advanced Materials, 2024, 36(49), 2412197

Citations: 0

4. ⚡ Unveiling Intercalation Chemistry via Interference-Free Characterization Toward Advanced Aqueous Zinc/Vanadium Pentoxide Batteries

Authors: Li, X., Xu, Y., Chen, X., Li, X., Fu, Q.

Journal: Advanced Science, 2024, 11(40), 2405134

Citations: 1

5. 🌱 Air-stable naphthalene derivative-based electrolytes for sustainable aqueous flow batteries

Authors: Zhao, Z., Li, T., Zhang, C., Li, S., Li, X.

Journal: Nature Sustainability, 2024, 7(10), 1273–1282

Citations: 0

6. 🔋 Surface passivation of lithium nitride as pre-lithiation reagents to enhance its air-stability

Authors: Liu, C., Zhang, H., Li, T., Yang, X., Li, X.

Journal: Journal of Energy Storage, 2024, 99, 113256

Citations: 0

7. ⚙️ Bismuth Single Atoms Regulated Graphite Felt Electrode Boosting High Power Density Vanadium Flow Batteries

Authors: Xing, F., Fu, Q., Xing, F., Liu, T., Li, X.

Journal: Journal of the American Chemical Society, 2024, 146(38), 26024–26033

Citations: 0

8. 🧱 A sub-10 μm Ion Conducting Membrane with an Ultralow Area Resistance for a High-Power Density Vanadium Flow Battery

Authors: Shi, M., Lu, W., Li, X.

Journal: ACS Applied Energy Materials, 2024, 7(18), 7576–7583

Citations: 5

9. 🔧 SEI/dead Li-turning capacity loss for high-performance anode-free solid-state lithium batteries

Authors: Yin, Q., Li, T., Zhang, H., Yang, X., Li, X.

Journal: Journal of Energy Chemistry, 2024, 96, 145–152

Citations: 1

10. 🧩 Carbon Nanotube Network Induces Porous Deposited MnO2 for High-Areal Capacity Zn/Mn Batteries

Authors: Liu, Y., Xie, C., Li, X.

Journal: Small, 2024, 20(35), 2402026

Citations: 2

Conclusion

Prof. Xianfeng Li exemplifies the qualities sought in candidates for the Research for Young Scientist Award. His pioneering work, prolific publication record, and prestigious accolades demonstrate his readiness to receive this honor. With minor enhancements in global collaborations and industry engagement, his career trajectory is poised to achieve even greater scientific breakthroughs.

Guowen Sun | lithium-ion batteries | Best Researcher Award

Dr. Guowen Sun | lithium-ion batteries | Best Researcher Award

student at  Lanzhou University, China

Guowen Sun, a distinguished researcher at Lanzhou University’s School of Physical Science and Technology, excels in materials science, physics, and mechanics. With expertise in composites, nanomaterials, and lithium-ion batteries, he has 18 high-impact publications, including in ACS Nano and Angewandte Chemie. His work has garnered 330 citations and an H-index of 9, reflecting his influence in advancing energy storage technologies and materials characterization.

 

Professional Profiles:

scholar

Education 🎓

Bachelor’s in Materials Science and Engineering, Lanzhou University 🇨🇳. Master’s in Materials Physics and Chemistry, Lanzhou University 🇨🇳. PhD in Materials Science and Technology, Lanzhou University 🇨🇳. Guowen honed his expertise in cutting-edge material properties, X-ray diffraction, and reaction kinetics during his academic journey.

Experience 💼:

Assistant Researcher, Lanzhou University 🌟.Conducted breakthrough studies in lithium-sulfur and lithium-ion batteries ⚡.Published 18 impactful articles and mentored students in advanced material mechanics 🔬.

Awards and Honors 🏅:

“Young Researcher Excellence Award” for energy storage research 🏆.Recognized as a top contributor in materials physics conferences 🌍.Multiple best paper awards in international journals 🥇.

Research Focus 🔍:

Enhancing lithium-sulfur battery performance with defect-rich materials ⚛️.Investigating microstructure optimization for high-rate and stable batteries 🔋.Developing nanomaterials and electrodes with catalytic properties for energy applications 🧪

✍️Publications Top Note :

Lithium–Sulfur Batteries (Li-S):

Investigating surface strain effects on MoS₂ for cathode performance enhancement.

External magnetic field-induced spin effects to boost reaction kinetics.

Developing novel vanadium sulfides (V₅S₈, NiAs-type) and intercalation engineering in MoS₂ for high-rate and ultra-stable Li-S batteries.

Advanced Catalytic Materials:

Catalysis mechanisms in carbon-encapsulated strained MoNi₄ nanoalloys and defect-rich MoS₂ nanosheets.

Hierarchical catalytic structures for fiber-shaped solar cells and polysulfide conversion.

Nanostructured Materials and Functional Design:

Co₃O₄/Fe₂O₃ nanoparticle composites for lithium-ion batteries.

Sulfur-induced porous carbon composites and advanced hard carbon anodes for Li-ion storage.

Interdisciplinary Applications:

Enhancing photoanode performance in dye-sensitized solar cells.

Surface modification techniques using quantum dot decorations and catalytic partial nitriding.

Conclusion

Dr. Guowen Sun is an exceptional researcher whose work in lithium-ion and lithium-sulfur batteries is at the forefront of energy storage technology. His innovative approaches and impactful publications make him a strong candidate for the Best Researcher Award. Addressing real-world applications and expanding his interdisciplinary network could elevate his contributions even further. With his current trajectory, Dr. Sun is well-positioned to lead transformative advancements in sustainable energy solutions.

Mr. Yongbiao Mu | Lithium ion batteries | Best Researcher Award

Mr. Yongbiao Mu | Lithium ion batteries | Best Researcher Award

PhD student of Medicine at Southern University of Science and Technology, China

Ph.D. in Material Science and Engineering (2021 – 2025) Southern University of Science and Technology (SUSTech), China Research Focus: Lithium/Zinc metal battery anodes, solid-state electrolytes, interface characterization.

Publication Profile

scholar

Education:

Ph.D. in Material Science and Engineering (2021 – 2025) Southern University of Science and Technology (SUSTech), China Research Focus: Lithium/Zinc metal battery anodes, solid-state electrolytes, interface characterization. M.S. in Materials Engineering (2016 – 2019) Harbin Institute of Technology (HIT), China Research Focus: Electrospun carbon nanofibers, CVD-grown vertically aligned graphene, lithium-ion battery anodes. B.S. in Water Quality Science and Technology (2004 – 2008) Nanjing Tech University, China Research Focus: Membrane materials, metal corrosion, and protection.

Work Experience:

Research Assistant (Mar. 2021 – Sep. 2021) Department of Mechanical and Energy Engineering, SUSTech, China. Engineer (Jan. 2019 – Mar. 2021) Materials Laboratory of Songshan Lake, Institute of Physics, Chinese Academy of Sciences, China.

Awards & Scholarships:

2023 National Scholarship for Ph.D. Students2023 Outstanding Graduate Student Model, SUSTech2023 Academic Star, SUSTech2022 Academic Star, SUSTech

Research Interests:

Key materials for secondary batteries (Lithium/Zinc metal anodes, solid-state electrolytes, high-energy-density silicon-carbon anodes).Advanced electrochemical characterizations (in-situ XRD, Raman, TEM, Aberration-Corrected EM, Cryo-EM). 

Publication  Top Notes

Graphene/MoS2/FeCoNi(OH)x and Graphene/MoS2/FeCoNiPx multilayer-stacked vertical nanosheets on carbon fibers for highly efficient overall water splitting

Authors: X. Ji, Y. Lin, J. Zeng, Z. Ren, Z. Lin, Y. Mu, Y. Qiu, J. Yu

Journal: Nature Communications, 2021

DOI: 10.1038/s41467-021-21735-3

Summary: This study presents the synthesis of vertical nanosheets composed of graphene, MoS2, and FeCoNi hydroxides/phosphides on carbon fibers. The engineered structure exhibits high catalytic activity for overall water splitting due to enhanced charge transfer properties and effective electrocatalytic performance.

2. A flexible, electrochromic, rechargeable Zn//PPy battery with a short circuit chromatic warning function

Authors: J. Wang, J. Liu, M. Hu, J. Zeng, Y. Mu, Y. Guo, J. Yu, X. Ma, Y. Qiu, Y. Huang

Journal: Journal of Materials Chemistry A, 2018

DOI: 10.1039/C8TA03155A

Summary: The research introduces a flexible Zn/PPy (polypyrrole) battery that features an electrochromic property allowing for a visual warning in case of a short circuit. This advancement improves battery safety and usability while maintaining high electrochemical performance.

3. 3D hierarchical graphene matrices enable stable Zn anodes for aqueous Zn batteries

Authors: Y. Mu, Z. Li, B. Wu, H. Huang, F. Wu, Y. Chu, L. Zou, M. Yang, J. He, L. Ye

Journal: Nature Communications, 2023

DOI: 10.1038/s41467-023-41448-0

Summary: This paper discusses the development of 3D hierarchical graphene matrices that significantly improve the stability of Zn anodes in aqueous Zn batteries, addressing issues of dendrite formation and enhancing cycling performance.

4. Growing vertical graphene sheets on natural graphite for fast charging lithium-ion batteries

Authors: Y. Mu, M. Han, J. Li, J. Liang, J. Yu

Journal: Carbon, 2021

DOI: 10.1016/j.carbon.2021.03.045

Summary: The authors present a method for growing vertical graphene sheets on natural graphite, which enhances the fast charging capability of lithium-ion batteries. The novel structure aids in improved lithium ion transport and cycling stability.

5. Nitrogen, oxygen‐codoped vertical graphene arrays coated 3D flexible carbon nanofibers with high silicon content as an ultrastable anode for superior lithium storage

Authors: Y. Mu, M. Han, B. Wu, Y. Wang, Z. Li, J. Li, Z. Li, S. Wang, J. Wan, L. Zeng

Journal: Advanced Science, 2022

DOI: 10.1002/advs.202104685

Summary: This study explores a novel anode design combining nitrogen and oxygen-doped vertical graphene arrays with high silicon content, resulting in improved lithium storage performance and stability.

6. Vertical graphene growth on uniformly dispersed sub-nanoscale SiO x/N-doped carbon composite microspheres with a 3D conductive network

Authors: M. Han, Y. Mu, F. Yuan, J. Liang, T. Jiang, X. Bai, J. Yu

Journal: Journal of Materials Chemistry A, 2020

DOI: 10.1039/C9TA12253F

Summary: The paper details the growth of vertical graphene on a novel composite microsphere structure, achieving enhanced conductivity and mechanical stability suitable for energy storage applications.

7. High zinc utilization aqueous zinc ion batteries enabled by 3D printed graphene arrays

Authors: B. Wu, B. Guo, Y. Chen, Y. Mu, H. Qu, M. Lin, J. Bai, T. Zhao, L. Zeng

Journal: Energy Storage Materials, 2023

DOI: 10.1016/j.ensm.2023.01.001

Summary: The authors report on a 3D printing technique to create graphene arrays, significantly improving zinc utilization in aqueous zinc-ion batteries while ensuring long-term cycling stability.

8. Growth of flexible and porous surface layers of vertical graphene sheets for accommodating huge volume change of silicon in lithium-ion battery anodes

Authors: M. Han, Z. Lin, X. Ji, Y. Mu, J. Li, J. Yu

Journal: Materials Today Energy, 2020

DOI: 10.1016/j.mten.2020.100445

Summary: This research focuses on creating flexible, porous vertical graphene layers that effectively manage the volume changes of silicon during cycling in lithium-ion batteries, thereby enhancing the durability of anodes.

9. Reconstruction of thiospinel to active sites and spin channels for water oxidation

Authors: T. Wu, Y. Sun, X. Ren, J. Wang, J. Song, Y. Pan, Y. Mu, J. Zhang, Q. Cheng, …

Journal: Advanced Materials, 2023

DOI: 10.1002/adma.202207041

Summary: This study investigates the transformation of thiospinel compounds into active sites for efficient water oxidation, contributing to advancements in photocatalytic water splitting technologies.

10. Oriented construction of efficient intrinsic proton transport pathways in MOF-808

Authors: X.M. Li, Y. Wang, Y. Mu, J. Gao, L. Zeng

Journal: Journal of Materials Chemistry A, 2022

DOI: 10.1039/D2TA02878K

Summary: This paper presents a method for constructing proton transport pathways in metal-organic frameworks (MOF-808), enhancing their efficiency in proton conduction applications.

11. Thermodynamically Stable Dual‐Modified LiF&FeF3 layer Empowering Ni‐Rich Cathodes with Superior Cyclabilities

Authors: Y. Chu, Y. Mu, L. Zou, Y. Hu, J. Cheng, B. Wu, M. Han, S. Xi, Q. Zhang, L. Zeng

Journal: Advanced Materials, 2023

DOI: 10.1002/adma.202212308

Summary: This research investigates a dual-modification approach to improve the stability and cyclability of Ni-rich cathodes, critical for advancing lithium-ion battery performance.

12. Flexible electrospun carbon nanofibers/silicone composite films for electromagnetic interference shielding, electrothermal and photothermal applications

Authors: Z. Li, Z. Lin, M. Han, Y. Mu, P. Yu, Y. Zhang, J. Yu

Journal: Chemical Engineering Journal, 2021

DOI: 10.1016/j.cej.2020.129826

Summary: The authors develop flexible composite films from electrospun carbon nanofibers and silicone, showcasing effective electromagnetic interference shielding and promising applications in electrothermal and photothermal technologies.

13. Recent advances in the anode catalyst layer for proton exchange membrane fuel cells

Authors: Z. Li, Y. Wang, Y. Mu, B. Wu, Y. Jiang, L. Zeng, T. Zhao

Journal: Renewable and Sustainable Energy Reviews, 2023

DOI: 10.1016/j.rser.2023.113182

Summary: This review summarizes recent advancements in anode catalyst layers for proton exchange membrane fuel cells, highlighting the materials and strategies that enhance performance.

14. High yield production of 3D graphene powders by thermal chemical vapor deposition and application as highly efficient conductive additive of lithium ion battery electrodes

Authors: X. Ji, Y. Mu, J. Liang, T. Jiang, J. Zeng, Z. Lin, Y. Lin, J. Yu

Journal: Carbon, 2021

DOI: 10.1016/j.carbon.2021.01.059

Summary: The authors present a method for producing 3D graphene powders via thermal chemical vapor deposition, which serve as highly efficient conductive additives in lithium-ion battery electrodes, enhancing electrochemical performance.

 

Prof. Vilas Pol | Safer Batteries | Best Researcher Award

Prof. Vilas Pol | Safer Batteries | Best Researcher Award

Prof. Vilas Pol , Purdue University, United States

Prof. Vilas Pol is academic and researcher in the field of renewable energy, holds a PhD in Bio systems Engineering from Kangwon National University, South Korea. His academic journey has been marked by a profound dedication to advancing solar energy technologies, specifically in solar thermal harvesting and its integration into agricultural and architectural applications.

 

Professional Profiles:

Orcid

Google scholar

Education 🎓

Ph.D. (Chemistry), 2005: Center for Advanced Materials and Nanotechnology, University of Bar-Ilan, Israel 🇮🇱Advisor: Emer. Prof. Aharon Gedanken
M. Phil. (Chemistry), 1999: University of Pune, India 🇮🇳Advisor: Emer. Prof. V.G. Dedgaonkar
M. Sc. (Inorganic Chemistry), 1996: University of Pune, India 🇮🇳
B. Sc. (Chemistry), 1994: University of Pune, India 🇮🇳

Awards & Honors 🏆

Foreign Fellow – Chemical Sciences, Maharashtra Academy of Science (MASc), India (2023) 2023 Purdue College of Engineering – Most Impactful Faculty Inventors 🧠  Purdue University Outstanding Engineering Teachers, Fall 2022 👨‍🏫  GUINNESS WORLD RECORDSTM – The Lowest Temperature (-100 Degrees Celsius) to Charge a Lithium-ion Battery (2022 2022 Most Impactful Faculty Inventors, Purdue University, USA 2022 Carbon Journal Prize – Special Mention 🏅 ACerS Ceramographic Competition 3rd Prize (2021) Purdue University Outstanding Engineering Teachers, Spring 2021  AIChE Excellence in Process (Microwave) Development Research Award (2021  TMS Light Metals, Extraction and Processing division’s Energy Best Paper Award (2021) 📝 Elected Chair – Purdue Sustainability Committee (2020) 🌱 Fellow – International Association of Advanced Materials, Ulrika, Sweden (2020)
Professional Achievement Award for Innovations in Green Process Engineering, AIChE (2019) 🌍urdue University Outstanding Engineering Teacher, Spring 2019
Salutes to Excellence, American Chemical Society (2019) Richard M. Fulrath Award – The American Ceramic Society (2019)

Granted US Patents 📜

Process for Remediation of Plastic Waste – US 8,153,094Autogenic Pressure Reactions for Battery Materials Manufacture – US 8,568,914Materials as Additives for Advanced Lubrication – US 08,648,019Process for Remediation of Plastic Waste – US 8,580,222Autogenic Reaction Synthesis of Photocatalysts for Solar Fuel Generation – US 9314770 B2Materials as Additives for Advanced Lubrication – US 9,441,178 B2Ultrasound Assisted In-situ Formation of Carbon/Sulfur Cathodes – US 9748572Solid Lubricant and Method of Making the Same – US 10787624Lubricants Comprising Carbon Particles and Methods of Making the Same – US 10913914Methods of Making Electrodes, Electrodes Made Therefrom, and Electrochemical Energy Storage Cells Utilizing the Electrodes – US 10910649Methods of Making Electrodes, Electrodes Made Therefrom, and Electrochemical Energy Storage Cells Utilizing the Electrodes – US 10333145Methods of Making Electrodes, Electrodes Made Therefrom, and Electrochemical Energy Storage Cells Utilizing the Electrodes – US 11050058Arrangement for Lithium-ion Battery Thermal Events Prediction, Prevention, and Control – US 11431040

Professional Experience 🧑‍🏫

August 2020 – Present: Professor, Davidson School of Chemical Engineering, Purdue University, West Lafayette, IN, USA 2018 – 2023: Purdue Faculty Scholar 🏆 Jan. 2014 – July 2020: Associate Professor, Davidson School of Chemical Engineering, Purdue University July 2017 – Present: Adjunct Professor, Metallurgy Engineering and Material Science Department, Indian Institute of Technology, Indore, India 🇮🇳 Oct. 2013 – Dec. 2013: Visiting Faculty, International Center for Materials Nanoarchitectonics, National Institute for Materials Science (NIMS), Tsukuba, Japan 🇯🇵 July 2010 – Sept. 2013: Materials Scientist, Lithium Battery Materials Group, Electrochemical Energy Storage Department, Argonne National Laboratory (ANL), IL, USA 🔋 July 2008 – June 2010: Argonne Scholar (Advisor: Dr. M. M. Thackeray), ANL, USA 🎓 Jan. 2007 – June 2008: Postdoctoral Appointee (Advisor: Dr. P. Thiyagarajan), Intense Pulsed Neutron Source, ANL, USA 🔬 Jan. 2005 – Dec. 2006: Postdoctoral Fellow in Dye Sensitized Solar Cells (Advisor: Prof. Arie Zaban), Bar-Ilan Institute of Nanotechnology and Advanced Materials, Israel ☀️

📖 Publications Top Note :

Sonochemical deposition of silver nanoparticles on silica spheres
Authors: VG Pol, DN Srivastava, O Palchik, V Palchik, MA Slifkin, AM Weiss, …
Published in: Langmuir, 2002
Citations: 574

Deposition of gold nanoparticles on silica spheres: a sonochemical approach
Authors: VG Pol, A Gedanken, J Calderon-Moreno
Published in: Chemistry of materials, 2003
Citations: 383

Improving the high-temperature performance of LiMn2O4 spinel electrodes by coating the active mass with MgO via a sonochemical method
Authors: JS Gnanaraj, VG Pol, A Gedanken, D Aurbach
Published in: Electrochemistry Communications, 2003
Citations: 310

Ultrasound assisted design of sulfur/carbon cathodes with partially fluorinated ether electrolytes for highly efficient Li/S batteries
Authors: W Weng, VG Pol, K Amine
Published in: Advanced materials, 2013
Citations: 262

Carbon spherules: synthesis, properties and mechanistic elucidation
Authors: VG Pol, M Motiei, A Gedanken, J Calderon-Moreno, M Yoshimura
Published in: Carbon, 2004
Citations: 209

Spherical carbon particles and carbon nanotubes prepared by autogenic reactions: evaluation as anodes in lithium electrochemical cells
Authors: VG Pol, MM Thackeray
Published in: Energy & Environmental Science, 2011
Citations: 204

Coating noble metal nanocrystals (Ag, Au, Pd, and Pt) on polystyrene spheres via ultrasound irradiation
Authors: VG Pol, H Grisaru, A Gedanken
Published in: Langmuir, 2005
Citations: 203

Binder-free N-and O-rich carbon nanofiber anodes for long cycle life K-ion batteries
Authors: RA Adams, JM Syu, Y Zhao, CT Lo, A Varma, VG Pol
Published in: ACS applied materials & interfaces, 2017
Citations: 190

Electrochemical performance of MXenes as K-ion battery anodes
Authors: M Naguib, RA Adams, Y Zhao, D Zemlyanov, A Varma, J Nanda, VG Pol
Published in: Chemical communications, 2017
Citations: 175

Ordered Network of Interconnected SnO2 Nanoparticles for Excellent Lithium‐Ion Storage
Authors: V Etacheri, GA Seisenbaeva, J Caruthers, G Daniel, JM Nedelec, …
Published in: Advanced Energy Materials, 2015
Citations: 172