Mohammadmahdi Amini | Structural health monitoring | Best Researcher Award

Mr. Mohammadmahdi Amini | Structural health monitoring | Best Researcher Award

Innovation & Technology Manager at Laskaridis Shipping Co. LTD, Greece

🎓 Mohammadmahdi Amini, a skilled BIM Modeler born in 1995, has over 3 years of professional expertise in Revit-based Building Information Modeling (BIM). 🌍 Based in Damghan, Semnan, Iran, he has authored three Q1 Elsevier journal papers exploring the effects of magnetic fields on concrete properties. 🏗️ Proficient in Autodesk Revit, AutoCAD, and advanced design software, Mohammadmahdi excels in architectural design, construction documentation, and quantity surveying. ✍️ Fluent in English with an IELTS score of 6, he thrives in collaborative environments, showcasing a passion for innovative civil engineering solutions.

Publication Profile

orcid

Education🎓

Mohammadmahdi holds a Bachelor’s degree in Civil Engineering from Semnan University, Iran (2014–2019). 🏫 Specializing in structural analysis and concrete technologies, he developed a foundational understanding of construction methodologies and project management. 📚 With a GPA of 13.73, his academic journey laid the groundwork for his advanced research in magnetic fields’ effects on concrete, culminating in contributions to high-impact journals. ✨ Semnan University was instrumental in shaping his technical and analytical abilities, inspiring his pursuit of excellence in BIM modeling and civil engineering research.

Experience 💼

As a BIM Modeler at Agourconstruction (Dec 2020–Feb 2024), Mohammadmahdi specialized in Revit-based architectural drafting, quantity surveying, and cost estimation. 📊 His role extended to supervision assistance and resident engineering, ensuring project execution met quality standards. 🏗️ With a keen eye for detail, he collaborated with multidisciplinary teams to deliver efficient construction documentation. ✨ Leveraging his Revit and AutoCAD expertise, he optimized workflows and developed innovative solutions for construction challenges. 🌟 His commitment to excellence has consistently driven successful project outcomes.

Awards and Honors 🏅

Elsevier Recognition: Published three Q1 journal papers in 2024, advancing research in magnetic fields’ effects on concrete. Academic Achievement: Recognized for contributing innovative methodologies to concrete technologies at Semnan University Innovation Awards: Praised for applying novel magnetic approaches in structural engineering solutions. Professional Excellence: Earned commendations for delivering high-quality BIM projects and advancing Revit-based construction workflows.

Research Focus 🔬

Mohammadmahdi’s research centers on leveraging magnetic fields to enhance concrete’s mechanical properties. 🧲 His studies delve into the compressive strength of concrete enriched with silica sand, ferrosilicon, and nano-silica. 📖 His publications include experimental and numerical investigations of magnetic field effects, aiming to improve concrete’s durability and magnetization. 💡 A pioneering approach integrates nanotechnology and magnetic innovations for advanced construction materials. ✨ His work bridges theory and application, inspiring sustainable and efficient civil engineering solutions.

Publications 📖

1. Numerical Investigation on the Impact of Alternating Magnetic Fields on the Mechanical Properties of Concrete with Various Silica Sand and Ferrosilicon Compositions

Authors: Ghanepour, M.; Amini, M.M.; Rezaifar, O.
Journal: Results in Engineering
Volume: 24
Article ID: 103631
Year: 2024
Citations: 0
This study investigates the mechanical behavior of concrete exposed to alternating magnetic fields, focusing on compositions incorporating silica sand and ferrosilicon. Advanced numerical simulations provide insights into how magnetic fields influence concrete’s structural performance and durability. This work serves as a significant step in optimizing construction materials for modern infrastructure.

2. Experimental Analysis of the Impact of Alternating Magnetic Fields on the Compressive Strength of Concrete with Various Silica Sand and Microsilica Compositions

Authors: Amini, M.M.; Ghanepour, M.; Rezaifar, O.
Journal: Case Studies in Construction Materials
Volume: 21
Article ID: e03487
Year: 2024
Citations: 3
This experimental study explores the compressive strength enhancement of concrete treated with alternating magnetic fields. It emphasizes how the integration of silica sand and microsilica alters the concrete’s properties under magnetic exposure. The findings highlight innovative strategies to improve concrete performance in high-demand applications.

3. A Novel Magnetic Approach to Improve Compressive Strength and Magnetization of Concrete Containing Nano Silica and Steel Fibers

Authors: Rezaifar, O.; Ghanepour, M.; Amini, M.M.
Journal: Journal of Building Engineering
Volume: 91
Article ID: 109342
Year: 2024
Citations: 7
This paper presents a groundbreaking approach to enhancing concrete’s compressive strength and magnetization through the inclusion of nano silica and steel fibers. The application of magnetic fields during the curing process demonstrates significant improvements in both mechanical and magnetic properties. This research has profound implications for the construction of magnetically sensitive and structurally robust materials.

Conclusion

Mohammadmahdi Amini demonstrates significant potential for the Research for Best Researcher Award due to his impactful publications, technical expertise, and innovative research on concrete properties. However, improving language proficiency, further diversifying research topics, and showcasing exceptional academic achievements could make his profile even more compelling for international recognition. Overall, he is a strong candidate for the award.

Javeed Kittur | Engineering Education | Best Researcher Award

Dr. Javeed Kittur | Engineering Education | Best Researcher Award

Assistant Professor at The University of Oklahoma , United States

🌟 Dr. Javeed Kittur is an Assistant Professor of Engineering Pathways at the University of Oklahoma, with expertise in engineering education and a passion for advancing student success. 📚 Previously, Dr. Javeed Kittur served as an Assistant Professor at KLE Technological University and worked as an Assistant Systems Engineer at Tata Consultancy Services. 💡 With a Ph.D. in Engineering Education Systems & Design from Arizona State University, Dr. Javeed Kittur focuses on generative AI, data analytics, and diversity in engineering. 🌍 Recognized with numerous accolades, Dr. Javeed Kittur is committed to transforming education through innovation. 🎓

Publication Profile

scopus

Education🎓

Ph.D. in Engineering Education Systems & Design, Arizona State University, 2022. M.Tech. in Power Systems Engineering (Gold Medalist), The National Institute of Engineering, Mysore, India, 2014.  B.E. in Electrical & Electronics Engineering, B.V.B. College of Engineering & Technology, India, 2011.

Experience💼

Assistant Professor, Engineering Pathways, University of Oklahoma (2022-present).  Assistant Professor, Electrical & Electronics Engineering, KLE Technological University, India (2014-2018).  Assistant Systems Engineer, UKPN-Data Update Project, Tata Consultancy Services, India (2011-2012).

Awards & Honors🏆

Outstanding Faculty Award, University of Oklahoma, 2024.  Teach Access Fellow, Teach Access Fellowship Program, 2024 ($4,000).  Ing.Paed.IGIP Award, ICTIEE, 2018. Gold Medalist, M.Tech., National Institute of Engineering, 2014. Best Paper Award, IEEE TAP Energy Conference, 2015.

Research Focus🤖 

Generative AI in education.  Enhancing student retention in online and in-person engineering programs.  Data mining and learning analytics in engineering education.  Broadening participation in engineering disciplines.  Faculty preparedness across cognitive, affective, and psychomotor domains.

Publications 📖

Leadership Capabilities Exploration and Development via an Experiential Leadership Course: A Work in Progress

Authors: Wolfinbarger, K.G., Kittur, J.

Event: ASEE Annual Conference and Exposition, 2024.

Focus: Development of leadership skills in engineering students through experiential courses emphasizing real-world applications.

Influence of Interpersonal Interactions on Student Engagement: Online Undergraduate Engineering Students’ Perspectives

Authors: Holt, K., Kittur, J.

Event: ASEE Annual Conference and Exposition, 2024.

Focus: Examines how peer and faculty interactions impact engagement in online engineering programs.

Does Task Complexity Matter? Event-Related Potential (ERP) Data Analysis of the Stroop Effect in Relation to Thermal Conditions

Authors: Mobaraki-Omoumi, M.E., Kittur, J., Siddique, Z.

Event: ASEE Annual Conference and Exposition, 2024.

Focus: Investigates cognitive load and thermal conditions using ERP data and the Stroop effect.

Examining the Engineering Self-Efficacy, Design Self-Efficacy, Intentions to Persist, and Sense of Belonging of First-Year Engineering Students through Community-Partnered Projects

Authors: Kittur, J., Olayemi, M., Harvey, T., Taffe, H.

Event: ASEE Annual Conference and Exposition, 2024.

Focus: Explores how community projects enhance engineering students’ self-efficacy and sense of belonging.

Design and Development of Survey Instrument to Measure Engineering Students’ Perspectives on the Use of ChatGPT

Authors: Sajawal, M.F., Kittur, J.

Event: ASEE Annual Conference and Exposition, 2024.

Citations: 2.

Focus: Development and validation of a tool to evaluate student perceptions of ChatGPT in engineering education.

Examining Students’ Beliefs on the Use of ChatGPT in Engineering

Authors: Sajawal, M.F., Kittur, J.

Event: ASEE Annual Conference and Exposition, 2024.

Citations: 2.

Focus: Explores the ethical and practical implications of ChatGPT in engineering studies.

Engineering Doctoral Students’ Expectations, Reflections, and Concerns Regarding Future in Academia

Authors: Garcia, O.J., Kittur, J.

Event: ASEE Annual Conference and Exposition, 2024.

Citations: 2.

Focus: Analyzes the aspirations and apprehensions of doctoral students aiming for academic careers.

Breaking the Stigma: Fostering Mental Health Resilience in Engineering – A Systematic Literature Review

Authors: Nguyen, H.T., Kittur, J.

Event: ASEE Annual Conference and Exposition, 2024.

Focus: Reviews strategies for addressing mental health challenges in engineering education.

Cognitive Domain of Learning: Exploring Undergraduate Engineering Students’ Understanding and Perceptions

Authors: Coffman, A.L., Kittur, J.

Event: ASEE Annual Conference and Exposition, 2024.

Citations: 1.

Focus: Investigates students’ cognitive understanding of engineering concepts and their learning experiences.

Conclusion

The candidate is a strong contender for the Best Researcher Award due to their exceptional contributions to engineering education, demonstrated innovation, and dedication to inclusive and transformative teaching methodologies. Their forward-looking research focus on AI, analytics, and retention strategies aligns perfectly with contemporary educational needs. Strengthening their global research collaborations, journal publication portfolio, and funding achievements will further enhance their competitiveness for this award.

yongming Xi | spine surgery | Outstanding Scientist Award

Prof. yongming Xi | spine surgery | Outstanding Scientist Award

spine at affiliated hospital of Qingdao unviversity , China

Prof. yongming Xi, a distinguished spine surgeon, professor, and doctoral supervisor at Qingdao University, has made significant contributions to the field of orthopedics. Holding multiple leadership roles, including Vice President of the Orthopedic Hospital and Deputy Director of the Shandong Institute of Traumatic Orthopedics, Prof. yongming Xi is recognized for pioneering work in spinal surgery and trauma care. With international exposure from visiting fellowships in the USA and South Korea, Dr. [Name] is committed to advancing spinal health through research, teaching, and clinical practice. 🏥👨‍⚕️📚

Publication Profile

scopus

Education 🎓📖🏫

Prof. yongming Xi completed his doctoral degree (MD) in Spine at the Second Medical University of Shanghai in 2007. He earned a Master’s degree in Orthopedics from Qingdao University Medical College in 1999 and a Bachelor’s degree in Clinical Medicine from Qingdao Medical College in 1993. His education reflects a strong foundation in medical practice and spine surgery.

Experience🏥🌍👨‍⚕️

Prof. yongming Xi has extensive experience, with roles such as a visiting fellow at renowned institutions like the DISC Institute in the USA (2015) and Rush Medical Center (2010). As a professor and associate professor at Qingdao University’s Affiliated Hospital since 2005, he has led orthopedic departments, specializing in spine surgery. He has also gained expertise through observerships in China and South Korea.

Awards and Honors 🏅🎖️🏆

Prof. yongming Xi has received prestigious recognitions, including “Advanced Individual in Poverty Alleviation” (2021) and “Outstanding Youth of National Health Commission” (2020). His accolades also include “Distinguished Expert of Taishan Scholars” (2019) and “Top 10 Orthopedic Doctor in China” (2015), underscoring his exceptional contributions to orthopedics.

Research Focus🔬🧬💉

Prof. yongming Xi’s research primarily focuses on spinal surgery techniques, trauma orthopedics, and improving surgical outcomes for spine patients. His interests include minimally invasive spine surgery, spinal deformities, and trauma rehabilitation. His goal is to enhance patient care through innovative research in spine treatments and surgical methodologies.

Publications 📖

Bioactive Peptide Hydrogel Scaffold with High Fluidity, Thermosensitivity, and Neurotropism for Spinal Cord Injury Repair: This study explores advanced hydrogels designed to promote spinal cord repair through their high fluidity, thermosensitivity, and neurotropism. These characteristics are essential for encouraging regeneration in the 3D spatial structure of the spinal cord.

Intra-articular Prolotherapy for Knee Osteoarthritis: A randomized controlled trial examining the combined effects of intra-articular prolotherapy and peri-articular perineural injection for knee osteoarthritis, demonstrating effectiveness in improving patient outcomes.

Recent Advances in Biomacromolecule-Reinforced Hydrogels: This review discusses the interactions, synthesis, and biomedical applications of 2D material hydrogels reinforced with biomacromolecules, emphasizing their potential in spine and orthopedic care.

Identification of Coagulation Diagnostic Biomarkers for Spinal Cord Injury: Research exploring biomarkers linked to spinal cord injury severity, providing a pathway for better diagnostics and personalized treatment strategies.

Biomechanical Effects of Different Posterior Fixation Techniques on Stability: A finite element analysis of thoracolumbar burst fractures, focusing on how different posterior fixation techniques impact spinal stability and adjacent segment degeneration.

Corrosion Resistance of Magnesium Alloy Coatings Loaded with Ciprofloxacin: This study investigates coatings for magnesium alloys that enhance corrosion resistance and possess anti-bacterial properties, offering potential applications in orthopedic implants.

Angiogenesis-Osteogenesis Coupling for Bone Regeneration: The use of photocurable 3D printing scaffolds loaded with exosomes to accelerate bone regeneration, focusing on the synergy between angiogenesis and osteogenesis.

Brominated Flame Retardants and Bone Mineral Density: A cross-sectional study examining the effects of brominated flame retardant exposure on bone mineral density in US adults, contributing to the understanding of environmental factors affecting bone health.

Predicting Venous Thromboembolism After Spinal Surgery: A nomogram designed to predict the risk of venous thromboembolism following spinal surgery, aiding in better patient management.

Conclusion

This individual demonstrates a remarkable blend of academic excellence, clinical expertise, leadership, and societal impact, making them a strong candidate for the Research for Outstanding Scientist Award. Their global experience and contributions to spine surgery, coupled with prestigious awards, establish their credibility. Addressing areas such as publication impact and innovative contributions could make their profile even more compelling for this award.

Rakesh Afre | Nanotechnology | Excellence in Research

Prof. Dr. Rakesh Afre | Nanotechnology | Excellence in Research

Professor at Zeal College of Engineering and Research, Pune

🎓 Dr. Rakesh A. Afre is a distinguished researcher in nanotechnology with a Ph.D. from Nagoya Institute of Technology, Japan. 📡 His groundbreaking thesis focused on synthesizing carbon nanotubes via spray pyrolysis and their application in solar cells. 🌞 With extensive global experience, he has contributed to leading-edge research on photovoltaic devices, flexible electrodes, and sustainable energy materials. 🏅 A prolific academic and innovator, Dr. Afre’s work is highly cited, boasting an h-index of 20.

Publication Profile

orcid

Education 🎓

Ph.D. in Nanotechnology, Nagoya Institute of Technology, Japan (2007) Thesis: Synthesis of Carbon Nanotubes for Solar Cells  M.Sc. in Physics (Energy Studies), North Maharashtra University, India (2001) Thesis: SnO₂ Thin Films for Anti-Reflection Coatings B.Sc. in Physics, North Maharashtra University, India (1999)

Professional Experience 👨‍🏫

Professor, ZCOER Pune (2024-) Project Head, Mirai Japanese Language Center (2024-) Deputy Director, Research & Innovation, Assam down town University (2022-2024 Researcher, Flinders University, Australia (2012-2014 Senior Researcher, KRICT, South Korea (2010-2012) Postdoctoral Fellow, Nagoya Institute of Technology (2007-2010)

Awards & Honor🏆

Gold Medal for inventions in nanotechnology, IID 2007  Japan Government Scholarship, Nagoya Institute of Technology (2003-2007)  Reviewer for prestigious journals like Thin Solid Films and Materials Design Member of Materials Research Society (MRS), ACS, and IAENG

Research Focus🔬

Carbon nanotubes for solar energy and nanotechnology  Development of organic photovoltaic devices  Transparent electrodes for flexible applications Nanodroplet pyrolysis for eco-friendly materials

Publications 📖

Title: Transparent conducting oxide films for various applications: A review
Publication: Reviews on Advanced Materials Science, 2018
Citations: 358

Summary: A comprehensive review of transparent conducting oxides (TCOs) used in optoelectronics, photovoltaics, and display technologies. The paper highlights advancements in material properties, fabrication methods, and applications.

Major Contributions:

Eucalyptus Oil as a Precursor

Title: A simple method of producing single-walled carbon nanotubes from a natural precursor: Eucalyptus oil

Publication: Materials Letters, 2007

Citations: 139

Turpentine Oil as a Feedstock

Title: Growth of vertically aligned carbon nanotubes on silicon and quartz substrate by spray pyrolysis of a natural precursor: Turpentine oil

Publication: Chemical Physics Letters, 2005

Citations: 128

Title: Carbon nanotubes by spray pyrolysis of turpentine oil at different temperatures and their studies

Publication: Microporous and Mesoporous Materials, 2006

Citations: 126

Hybrid Solar Cells

Title: Silicon nanowire array/polymer hybrid solar cell incorporating carbon nanotubes

Publication: Journal of Physics D: Applied Physics, 2009

Citations: 89

Hydrogen Storage

Title: Hydrogen storage by carbon materials synthesized from oil seeds and fibrous plant materials

Publication: International Journal of Hydrogen Energy, 2007

Citations: 72

Functionalization of Carbon Nanotubes

Title: Functionalization of multi-walled carbon nanotubes (MWCNTs) with nitrogen plasma for photovoltaic device application

Publication: Current Applied Physics, 2009

Citations: 61

Transparent Electrodes

Title: Highly conductive interwoven carbon nanotube and silver nanowire transparent electrodes

Publication: Science and Technology of Advanced Materials, 2013

Citations: 56

Perovskite Solar Cells

Title: Perovskite Solar Cells: A Review of the Latest Advances in Materials, Fabrication Techniques, and Stability Enhancement Strategies

Publication: Micromachines, 2024

Citations: 44

Conclusion

The candidate is exceptionally qualified for the Research Excellence Award due to their significant contributions to nanotechnology, demonstrated by their academic rigor, impactful research, and leadership in innovation. With strategic efforts in broadening interdisciplinary collaborations, enhancing public engagement, and diversifying research applications, they can further strengthen their standing as a leading figure in the field. Their credentials and achievements make them a compelling nominee for this prestigious recognition.

Dilek Sönmezer Açıkgöz | Tissue engineering | Best Researcher Award

Dr. Dilek Sönmezer Açıkgöz | Tissue engineering | Best Researcher Award

Phd at Çukurova University, Turkey

Dr. Dilek Sönmezer Açıkgöz is a Lecturer at Çukurova University’s Department of Biomedical Engineering, specializing in biomaterials, tissue engineering, and regenerative medicine. She holds a PhD from Erciyes University and has contributed to cutting-edge research on pericardial fluid applications in tissue engineering. Dr. Sönmezer has published extensively in SCI-indexed journals and presents regularly at international conferences.

Publication Profile

orcid

🎓 Education

PhD: Biomedical Engineering, Erciyes University (2012-2022)MSc: Biomedical Engineering, Erciyes University (2008-2011)BSc: Biology, Erciyes University (2004-2008)Internship: Eindhoven University of Technology (2010-2011)

💼 Experience

Lecturer: Çukurova University (2014-present)Research: Tissue engineering, pericardial fluid characterization, biomaterial developmentPatent Holder: Ultrasonic system for coronary bypass surgery

🏆 Awards & Honors

Patent: Ultrasonic vascular measurement system (2015)Key Publications: Bio-Medical Materials and Engineering, Biotechnology Applied BiochemistryRecognitions: Frequent presenter at international biomedical conferences

🔬 Research Focus

Biomedical Engineering: Biomaterials, tissue engineering, pericardial fluid studiesBioprinting: Developing biocompatible bioinks for 3D printingRegenerative Medicine: Exploring extracellular matrix applications for tissue regeneration

Publications 📖

Applications of a Biocompatible Alginate/Pericardial Fluid-Based Hydrogel for the Production of a Bioink in Tissue Engineering
Biotechnology and Applied Biochemistry | 2024-12-02
DOI: 10.1002/bab.2697
Contributors: Dilek Sönmezer Açıkgöz, Fatma Latifoğlu, Güler Toprak, Münevver Baran

Production of Hydrogel with Alginate and Pericardial Fluid for Use in Tissue Engineering Applications
Çukurova Üniversitesi Mühendislik Fakültesi Dergisi | 2023-12-28
DOI: 10.21605/cukurovaumfd.1410697
Contributors: Dilek Sönmezer, Fatma Latifoğlu

A Native Extracellular Matrix Material for Tissue Engineering Applications: Characterization of Pericardial Fluid
Journal of Biomedical Materials Research Part B: Applied Biomaterials | 2023-09
DOI: 10.1002/jbm.b.35260
Contributors: Dilek Sönmezer, Fatma Latifoğlu, Güler Toprak, Münevver Baran

 

Conclusion

Dr. Dilek Sönmezer Açıkgöz stands out as a highly qualified candidate for the Best Researcher Award, with substantial contributions to biomedical engineering, tissue engineering, and biomaterials. Her dedication to research, publications in top journals, and development of patented technology make her a strong contender. Strengthening international partnerships and focusing on high-impact translational research can further enhance her candidacy for future recognitions.

Dr. Liang Yang | Bone biomaterials | Best Researcher Award

Dr. Liang Yang | Bone biomaterials | Best Researcher Award

Dr at Shanghai Sixth People’s Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, China

Liang Yang, MD, is a 33-year-old orthopedic surgeon at Shanghai Sixth People’s Hospital, affiliated with Shanghai Jiao Tong University School of Medicine, China. Specializing in biomimetic materials for orthopedic reconstruction, he focuses on repairing bone defects under pathological conditions like osteoporosis. His innovative work on hydroxyapatite (HA) modification and chiral-engineered biomaterials has led to significant advancements in bone healing and regeneration.

Publication Profile

orcid

🎓 Education

Liang Yang earned his MD in Orthopedics from Shanghai Jiao Tong University School of Medicine. His academic pursuits have centered on advancing orthopedic materials, particularly through modifying HA to enhance bioactivity. Yang’s education combined intensive clinical training with cutting-edge research on bioactive ion doping (Sr2+/Fe3+) in HA for bone regeneration, culminating in impactful publications and novel biomaterial development. His studies positioned him at the forefront of orthopedic biomimetics.

💼 Experienc

Dr. Yang has dedicated his career to orthopedic surgery and biomaterial research at Shanghai Sixth People’s Hospital. His expertise spans developing bioactive hydroxyapatite materials, pioneering chiral-engineered biomaterials, and addressing osteoporosis-induced bone defects. Yang has led multiple research projects, resulting in publications in high-impact journals. His work reflects a seamless blend of surgical practice and translational research, bridging the gap between clinical needs and innovative material solutions.

🏆 Awards and Honors

Dr. Yang’s contributions to orthopedic biomaterials have earned him recognition in scientific and medical communities. His publications in journals like Advanced Science and Chem. Eng. J. have been widely cited. He received institutional awards for innovation in biomimetic material development and recognition from Shanghai Jiao Tong University for advancing orthopedic reconstruction techniques. His groundbreaking work on chiral hydroxyapatite further positioned him as a leader in biomaterial innovation.

🔬 Research Focus

Liang Yang’s research focuses on biomimetic materials for orthopedic reconstruction, particularly hydroxyapatite (HA) modification to enhance bioactivity and bone regeneration. His work explores doping HA with Sr2+/Fe3+ ions to modulate immunoregulation, angiogenesis, and osteogenesis. Recently, Yang synthesized chiral hydroxyapatite (CHA) with enantiomer-dependent osseointegration properties, unveiling L-CHA’s superior potential for osteoporosis treatment. His research paves the way for next-gen chiral-engineered biomaterials in orthopedics.

Publications 📖

Chirality‐Induced Hydroxyapatite for Osteoporotic OsseointegrationAdvanced Science, 2024. DOI: 10.1002/advs.202411602.

Focus: Enantioselective bone-implant interactions to enhance osseointegration in osteoporosis.

Graphene Oxide Quantum Dot ScaffoldAdvanced Functional Materials, 2023. DOI: 10.1002/ADFM.202211709.

Focus: Immuno-inductive angiogenesis and nerve regeneration via biocompatible nanoscaffolds.

Cryogenically 3D Printed Biomimetic ScaffoldsChemical Engineering Journal, 2022. DOI: 10.1016/J.CEJ.2021.133459.

Focus: Bone tissue engineering using Sr2+/Fe3+ doped hydroxyapatite scaffolds.

Biomimetic Porous ScaffoldsBiomedical Materials, 2022. DOI: 10.1088/1748-605X/ac4b45.

Focus: Accelerated angiogenesis/osteogenesis with doped hydroxyapatite.

3D Printed Porous Scaffolds for Bone TissueBiofabrication, 2021. DOI: 10.1088/1758-5090/ABCF8D.

Focus: Bioactive scaffolds enhancing bone regeneration.

Anterior Acetabular Fracture FixationBMC Musculoskeletal Disorders, 2021. DOI: 10.1186/S12891-021-04034-W.

Focus: Surgical fixation methods for acetabular fractures.

Cartilage Changes with GlucocorticoidsCartilage, 2021. DOI: 10.1177/1947603520978574.

Focus: Epiphyseal cartilage effects in glucocorticoid-treated mice.

🔹 Conclusion

Dr. Liang Yang’s pioneering work in chiral hydroxyapatite and bioactive bone materials makes him a strong contender for the Best Researcher Award. His contributions to orthopedic biomaterials, innovative solutions for bone defects, and significant publication record underscore his potential to drive transformative advancements in orthopedic surgery and bone regeneration.

Yuqin Wang | Mechanical system testing and control | Best Researcher Award

Prof. Yuqin Wang | Mechanical system testing and control | Best Researcher Award

University teacher at  Chaohu University, China

🌟 Yuqin Wang is an associate professor in the School of Mechanical Engineering at Chaohu University, China. 🏫 With a passion for advancing engineering education, he has made significant contributions to the design of virtual simulation systems and mechanical system testing and control. 💻🔧 Yuqin has presided over five teaching and research projects and published multiple SCI-indexed papers that enhance the engineering practice abilities of students. 📚🎓 His innovative “One Body, Two Wings” virtual simulation teaching system combines online and offline resources, fostering student innovation and professional skills in intelligent manufacturing. 🤖✨ Yuqin’s dedication to integrating technology into teaching has made him a leading figure in modern engineering education.

 

Professional Profiles:

orcid

Education 🎓

Postgraduate Degree in Mechanical Engineering Institution: Chaohu University Yuqin Wang completed his postgraduate studies focusing on mechanical system testing and control. His academic background reflects a strong commitment to integrating technology into traditional engineering disciplines, enabling innovative applications in teaching and research. ✨📚

Experience 💼

Associate Professor: Chaohu University Focused on virtual simulation, mechanical system testing, and control.  Implemented advanced teaching methodologies for intelligent manufacturing professionals.  Published 10+ SCI-indexed academic papers on engineering education.

Awards and Honors 🏆

Notable Contributions: Recognized for innovative virtual simulation teaching methodologies.  Publications: 10 SCI-indexed papers.

Research Focus 📚

Area: Virtual simulation design for intelligent manufacturing. Impact: Enhancing practical and cognitive engineering skills.

✍️Publications Top Note :

Optimization Design of Centrifugal Pump Flow Control System Based on Adaptive Control

Conclusion

Yuqin Wang is a strong contender for the Best Researcher Award due to his dedication to advancing mechanical system testing and virtual simulation. His research has significantly impacted engineering education and professional development. Addressing areas like patents, industry collaborations, and broader outreach can further solidify his position as an innovator and leader in his field.

Zhansheng Wu | Enzyme immobilization | Best Researcher Award

Prof. Zhansheng Wu | Enzyme immobilization | Best Researcher Award

Professor at  Xi’an Polytechnic University, China

🌟 Dr. Zhansheng Wu is a Vice President of the School of Environmental and Chemical Engineering at Xi’an Polytechnic University. 📚 A third-level professor, doctoral supervisor, and renowned scientist, he has led prestigious projects under China’s National Natural Science Foundation and the National Key R&D Program. 🌏 Recognized globally, he is among the top 2% of scientists worldwide and serves as an editorial board member of Biochar and Carbon Research. His contributions center around clean ecological dyeing, biological and environmental chemical industries, and material sciences.

Professional Profiles:

orcid

Education🎓 

2017.4–2017.5: University of California, Los Angeles – Study. 2015.12–2016.5: University of Turin – Visiting Scholar. 2008.8–2011.6: Beijing Institute of Technology – Doctorate in Biochemistry  2003.8–2006.6: Shihezi University – Master’s in Food Science & Engineering  1999.8–2003.6: Shihezi University – Bachelor’s in Food Science & Engineering.

Experience🛠️ 

Vice President and Professor, Xi’an Polytechnic University.  Chief Scientist of Shaanxi Province’s “Qin Chuangyuan” team  Project Leader for National Key Research & Development Plan (2021–2024). Editorial Board Member for Biochar and Carbon Research. Visiting Scholar, University of Turin (2015–2016).

Awards and Honors🏅

Approved by National Natural Science Foundation of China – Young Talents Fund.  Listed in the Top 100,000 Scientists and Top 2% globally.  Leader of Shaanxi’s “Qin Chuangyuan” Scientist + Engineer Team. Published in top journals like Chemical Engineering Journal (IF > 16.7).

Research Focus🔍

Clean ecological dyeing and finishing technologies.  Development of biochar-based bactericide systems for soil improvement. Photocatalysis for environmental remediation and water treatment. Sustainable agricultural practices with biochar innovations. Exploring chemical-material industry advancements.

✍️Publications Top Note :

  • Biochar and Environmental Applications:
    • Prediction of biochar yield and specific surface area using advanced algorithms.
    • Multi-functional biochar composites for pollution control and fertilizer applications.
  • Metal-Organic Frameworks (MOFs):
    • Amino-functionalized MOFs for enzyme stability and organic pollutant degradation.
    • Hollow MOFs designed for enzyme immobilization and rare ginsenoside synthesis.
  • Photocatalysis and Functional Materials:
    • Development of heterojunction photocatalysts for efficient degradation of pollutants.
    • N-doped Ti3C2Tx-MXene-modified photocatalysts for enhanced photocatalytic ammonia synthesis.
  • Biocontrol and Environmental Microbiology:
    • Identification and genetic characterization of biocontrol strains with siderophilic properties.
    • Bioreduction of hexavalent chromium using Bacillus subtilis enhanced with humic acid.
  • Innovative Enzyme Immobilization:
    • Enhancements in enzyme loading and activity for industrial pollutant degradation.
  • Nanomaterials and Wastewater Treatment:
    • Strategies leveraging BaTiO3 piezocatalysis for vibration energy harvesting and water purification.
    • Functionalized ZnO/ZnSe composites for organic dye wastewater treatment.
  • Agricultural and Environmental Stress:
    • Applications of microcapsules for Capsicum growth under salt stress.

Conclusion

Zhansheng Wu stands as a stellar candidate for the Best Researcher Award due to his groundbreaking work in environmental chemical engineering and materials science. His extensive contributions to sustainable technologies, particularly in photocatalysis and biochar systems, have significantly advanced global environmental goals. While there is room to enhance the societal impact and commercialization aspects of his research, his academic excellence, leadership in high-value projects, and international recognition firmly establish him as a deserving contender for this prestigious award.

Changmin Shi | battery mechanics | Best Researcher Award

Dr. Changmin Shi | battery mechanics | Best Researcher Award

Postdoctoral Research Associate at  Brown University, United State

Changmin Shi is a Postdoctoral Research Associate at Brown University, specializing in energy materials mechanics and thermal energy management. He earned his Ph.D. in Materials Science and Engineering from the University of Maryland, focusing on high-energy-density lithium-sulfur batteries. He has an M.S. from Columbia University and a B.Eng. from the University of Science and Technology Beijing. Shi has secured significant research funding, received numerous awards, and delivered various invited talks. He has extensive teaching and mentoring experience and actively participates in DEI initiatives. His research interests include advancing thermal energy management, developing novel battery materials, and innovating mechanical devices for energy materials.

 

Professional Profiles:

Education and Training 📚🎓

Brown University (Providence, RI) 🏫 2023–PresentPostdoctoral Research Associate, School of EngineeringAdvisor: Dr. Brian W. SheldonResearch: Energy Materials Mechanics and Thermal Energy ManagementUniversity of Maryland (UMD) (College Park, MD) 🏛️ 2019–2023Ph.D., Materials Science and EngineeringAdvisor: Dr. Eric D. WachsmanDissertation: High-Energy-Density Lithium-Sulfur Batteries Using Garnet Solid Electrolyte: Performance and CharacterizationDissertation Committee: Dr. Liangbing Hu, Dr. Yifei Mo, Dr. Paul Albertus, Dr. Chunsheng WangColumbia University (New York, NY) 🗽 2017–2019M.S. Materials Science and EngineeringAdvisor: Dr. Yuan YangResearch: Flexible Lithium-ion Batteries with High Energy DensityUniversity of Science and Technology Beijing (USTB) (Beijing, CN) 🏯 2013–2017B.Eng. Metallurgical EngineeringAdvisor: Dr. Xindong WangDissertation: Pitting Corrosion Analysis of TiN-coated Metallic Bipolar Plates for PEM Fuel Cells

Research Interests (Materials and Mechanics) 🔬⚙️

Advancing thermal energy management materials and systems for space thermoregulation 🚀Developing novel materials for low-strain cathodes, safe composite polymer electrolytes, and new battery recycling approaches 🔋Innovating mechanical devices for investigating the mechanical properties of energy materials

Honors & Awards 🏆

All America Chinese Youth Federation Top 40 Under 30 (2024) 🌟Polymers Exceptional Reviewer (2024) 🌟Batteries Travel Grant (2024) 🌟Guest Editor, Batteries (2024) 🌟Princeton Pathways into the Academy Program, Princeton University (2024) 🌟ECS-IOP Trusted Reviewer (Top 15% awarded) (2024) 🌟Nano Research Energy Young Star Researcher Gold Award (2023) 🌟Editorial Board Member, Assistant Editor of Nano Research Energy (2023–Present) 🌟Best Editor Award, Nano Research Energy (2023) 🌟Early Career Distinguished Scholar Program, Honorable Mention, UC Irvine (2023) 🌟Postdoctoral Research Associate Conference Travel Fund, Brown University (2023) 🌟Chinese Government Award for Outstanding Self-Financed Students Abroad (2023) 🌟Youth Editorial Board Member of Nano Research Energy (2023) 🌟Jacob K. Goldhaber Travel Grant, UMD (2022) 🌟Future Faculty Program Fellow, UMD (2022) 🌟Outstanding Graduate Assistance Award (Teaching Excellence), UMD (2020) 🌟Dean’s Fellowship, UMD (2019–2020) 🌟Distinguished Outstanding Undergraduate, USTB (2017) 🌟Outstanding Undergraduate Dissertation, USTB (2017)

Teaching Experience 👩‍🏫

Brown University 🏫ENGN 2920H Materials and Interfaces for Energy Storage Materials 🔋Responsibility: Designed and led lithium-ion battery assembly lab session**ENGN 1420 K

✍️Publications Top Note :

Rechargeable solid-state lithium metal batteries with vertically aligned ceramic nanoparticle/polymer composite electrolyte
X Wang, H Zhai, B Qie, Q Cheng, A Li, J Borovilas, B Xu, C Shi, T Jin, …
Nano Energy, 60, 205-212 🪫🔋, 2019

Full Dissolution of the Whole Lithium Sulfide Family (Li2S8 to Li2S) in a Safe Eutectic Solvent for Rechargeable Lithium–Sulfur Batteries
Q Cheng, W Xu, S Qin, S Das, T Jin, A Li, AC Li, B Qie, P Yao, H Zhai, …
Angewandte Chemie, 131 (17), 5613-5617 💧🔋, 2019

Accordion-like stretchable Li-ion batteries with high energy density
C Shi, T Wang, X Liao, B Qie, P Yang, M Chen, X Wang, A Srinivasan, …
Energy Storage Materials, 17, 136-142 💪🔋, 2019

High‐energy‐density foldable battery enabled by zigzag‐like design
X Liao§, C Shi§ (co-first author), T Wang§, B Qie§, Y Chen, P Yang, …
Advanced Energy Materials, 9 (4), 1802998 🔄🔋, 2019

Extreme lithium-metal cycling enabled by a mixed ion-and electron-conducting garnet three-dimensional architecture
GV Alexander, C Shi, J O’Neill, ED Wachsman
Nature Materials, 22 (9), 1136-1143 ⚡🔋, 2023

Flexible Solid-State Lithium-Sulfur Batteries Based on Structural Designs
C Shi, M Yu
Energy Storage Materials, 57, 429–459 🔧🔋, 2023

3D Asymmetric Bilayer Garnet-Hybridized High-Energy-Density Lithium–Sulfur Batteries
C Shi, T Hamann, S Takeuchi, GV Alexander, AM Nolan, M Limpert, Z Fu, …
ACS Applied Materials & Interfaces, 15 (1), 751–760 🛠️🔋, 2023

High Sulfur Loading and Capacity Retention in Bilayer Garnet Sulfurized‐Polyacrylonitrile/Lithium‐Metal Batteries with Gel Polymer Electrolytes
C Shi, S Takeuchi, GV Alexander, T Hamann, J O’Neill, JA Dura, …
Advanced Energy Materials, 13 (42), 2301656 ⚛️🔋, 2023

Precipitation behavior of carbides in high-carbon martensitic stainless steel
Q Zhu, J Li, C Shi, W Yu, C Shi, J Li
International Journal of Materials Research, 108 (1), 20-28 🏗️🔬, 2017

All-Solid-State Garnet Type Sulfurized Polyacrylonitrile/Lithium-Metal Battery Enabled by an Inorganic Lithium Conductive Salt and a Bilayer Electrolyte Architecture
C Shi, GV Alexander, J O’Neill, K Duncan, G Godbey, ED Wachsman
ACS Energy Letters, 8 (4), 1803-1810 ⚙️🔋, 2023

Evolution of CaO–MgO–Al2O3–CaS–(SiO2) inclusions in H13 die steel during electroslag remelting process
H Wang, CM Shi, J Li, CB Shi, YF Qi
Ironmaking & Steelmaking, 45 (1), 6-16 🏭🔬, 2018

New Insights into Nail Penetration of Li‐Ion Batteries: Effects of Heterogeneous Contact Resistance
M Chen, Q Ye, C Shi, Q Cheng, B Qie, X Liao, H Zhai, Y He, Y Yang
Batteries & Supercaps 🔩🔋, 2019

A facile and effective design for dynamic thermal management based on synchronous solar and thermal radiation regulation
N Guo, L Yu, C Shi, H Yan, M Chen
Nano Letters, 24 (4), 1447-1453 🌞❄️, 2024

Radiative-coupled evaporative cooling: Fundamentals, development, and applications
L Yu, Y Huang, W Li, C Shi, BW Sheldon, Z Chen, M Chen
Nano Research Energy, 3 (2) 💧🌡️, 2024

3D bridge-arch-structured dual-side evaporator for practical, all-weather water harvesting and desalination
M Chen, S Li, X Chen, Y Huang, B Liu, H Yan, BW Sheldon, Q Li, …
Journal of Materials Chemistry A, 12 (16), 9574-9583 💧🏗️, 2024

Optimum slagging materials smelting in combined-blowning converter based on single-slag steelmaking
YAOY WU Long, SHI Chang-min, LI Jing, XU Zhong-bo, HAN Xiao
Iron and Steel, 52 (1), 32-37 ⚙️🔬, 2017

High-energy-density deformable batteries
Y Yang, G Qian, X Chen, L Xiangbiao, C Shi, T Wang
US Patent App. 16/979,312 🔋💡, 2021

Challenges and Opportunities for Passive Thermoregulation
N Guo, C Shi§,* (co-first and corresponding author), N Warren, …
Advanced Energy Materials, 2401776 🔄🌡️, 2024

Blocking Li metal dendrites with piezoelectric solid polymer electrolytes through coupled piezoelectricity, mechanics, and electrochemistry effects
C Shi, S Kim, Y Qi, A Kingon, B Sheldon
American Chemical Society Spring 2024 Meeting 📅🔋, 2024

A mechanical-optical coupling design on solar and thermal radiation modulation for thermoregulation
N Guo, C Shi* (corresponding author), B Sheldon, H Yan, M Chen
Journal of Materials Chemistry A 🌞🛠️, 2024

Conclusion

The candidate’s groundbreaking contributions to materials science, particularly in energy storage, and their technical expertise make them an outstanding contender for the Best Researcher Award. Their innovative research in high-energy-density batteries and flexible Li-ion batteries directly addresses critical challenges in energy technology, showcasing exceptional academic and technical prowess. By fostering industrial partnerships, pursuing interdisciplinary research, and gaining broader international recognition, they could further enhance their candidacy and solidify their position as a global leader in the field.

Haoyu Wang | Sensor | Best Researcher Award

Dr. Haoyu Wang |  Sensor | Best Researcher Award

Doctor at Dalian Jiaotong University, China

Dalian Jiaotong University Ph.D. candidate in Mechatronics | 📚 Published 4 first-author and 2 co-authored papers in JCR Q1/Q2 journals | 🎯 Expert in thin-film thermocouples, intelligent temperature monitoring, and machine learning models for surgical safety.

 

Publication Profile

scopus

Education🎓

Doctorate in Mechatronics (2022–Present), Dalian Jiaotong University, advised by Prof. Cui Yunxian Master’s in Mechatronics (2020–2022), Dalian Jiaotong University, advised by Prof. Cui Yunxia Bachelor’s in Industrial Engineering (2016–2020), Dalian Jiaotong University Extensive academic achievements with a focus on nanocomposite sensor technology and temperature monitoring systems.

Experience🔬

Developed NiCr/NiSi thin-film thermocouples using magnetron sputtering Revealed second-order dynamic characteristics through nanosecond laser experiments Engineered a wireless temperature monitoring system for bone drilling, enhancing surgical safety Integrated machine learning models to optimize heat management in medical procedures

Awards & Honors🏆

4 publications in prestigious journals like Measurement (IF 5.2) & Materials (IF 3.1) Corresponding author for 2 groundbreaking studies on CFRP drilling and transient temperature measurement Contributed significantly to advancing high-precision temperature sensors in healthcare and manufacturingRecognized for innovative research in dynamic thermocouple performance and intelligent monitoring systems.

Research Focus🌡️ 

Mechanism of Dynamic Characteristic Regulation for Thin-Film Thermocouples (TFTCs  Intelligent Monitoring of Bone Drilling Temperature using machine learning Transient heat transfer modeling to enhance thermocouple stability and speed Developing real-time surgical temperature monitoring systems to prevent thermal bone damage

Publication  Top Notes

Nanosecond-level Second-order Characteristics in Dynamic Calibration of Thin Film Thermocouples

Authors: Wang, H.; Cui, Y.; Mingfeng, E.; Ding, W.; Yin, J.

Journal: Measurement, 2024, 238, 115165

Summary: This paper presents a novel dynamic calibration technique for thin-film thermocouples (TFTCs) using short-pulse lasers, achieving nanosecond-level precision.

2. Research on a Dedicated Thin-Film Thermocouple Testing System for Transient Temperature Measurement

Authors: Xie, Y.; Cui, Y.; Wang, H.; Feng, W.

Journal: Measurement Science and Technology, 2024, 35(8), 085117

Summary: This study develops a specialized testing system for measuring transient temperatures, significantly enhancing the accuracy of TFTC performance evaluation.

3. Thermoelectric Electromotive Force Oscillation of NiCr/NiSi Thin Film Thermocouple

Authors: Sun, Y.; Liu, Z.; Hao, Y.; Cui, Y.; Ding, W.

Journal: Small, 2024, 20(23), 2308002

Summary: Investigates oscillation behaviors in NiCr/NiSi TFTCs under dynamic conditions, contributing to sensor stability improvements at high temperatures.

4. Fast Reconstruction of Milling Temperature Field Using CNN-GRU Models

Authors: Ma, F.; Wang, H.; E, M.; Cui, Y.; Yin, J.

Journal: Frontiers in Neurorobotics, 2024, 18, 1448482

Summary: This research leverages CNN-GRU machine learning models for real-time reconstruction of temperature fields in milling processes, optimizing thermal management.

5. A Novel Sensor with High-Temperature Performance for In-Situ Measurement

Authors: Cui, Y.; Song, Y.; Wang, H.; Wang, X.; Yin, J.

Conference: Journal of Physics: Conference Series, 2024, 2760(1), 012046

Summary: Introduces a high-temperature sensor designed for in-situ applications, demonstrating superior heat resistance and measurement accuracy.

6. Design and Fabrication of a Thermopile-Based Thin Film Heat Flux Sensor

Authors: Cui, Y.; Liu, H.; Wang, H.; Ding, W.; Yin, J.

Journal: Coatings, 2022, 12(11), 1670

Summary: Details the creation of a lead-substrate integrated thermopile-based sensor, enhancing heat flux measurement precision.

7. Nanocomposite Thin-Film Temperature Sensors in Milling Processes

Authors: Cui, Y.; Wang, H.; Cao, K.; Ding, W.; Yin, J.

Journal: Materials, 2022, 15(20), 7106

Summary: Focuses on developing nanocomposite TFTCs for enhanced temperature sensing during milling, ensuring precise thermal management.

8. Development of a High-Temperature Thin Film Heat Flux Sensor

Authors: Cui, Y.; Huang, J.; Cao, K.; Wang, H.; Yin, J.

Journal: Yi Qi Yi Biao Xue Bao, 2021, 42(3), pp. 78–87

Summary: Describes the development of advanced high-temperature thin-film sensors, with applications in industrial heat measurement systems.

Conclusion

Haoyu Wang is a strong candidate for the Best Researcher Award due to his innovative contributions to sensor technology, demonstrated publication excellence, and successful interdisciplinary applications. His work on intelligent temperature monitoring in bone drilling is not only pioneering but also bridges a critical gap between medical and engineering sciences. With broader application exploration and increased global exposure, he has the potential to become a leading figure in the field of sensor technology.