Sheeba Rachel S | Machine Learning | Best Researcher Award

Mrs. Sheeba Rachel S | Machine Learning| Best Researcher Award

Assistant Professor | Sri Sai Ram Engineering College | India

  S. Sheeba Rachel has contributed extensively to the fields of artificial intelligence, machine learning, deep learning, healthcare technologies, smart devices, image processing, cloud computing, and Internet of Things with publications including Cardiovascular Disease Prediction Using Machine Learning and Deep Learning, Heart Disease Prediction of an Individual Using SVM Algorithm, Automated Driving License Testing System, Real-Time Face Detection and Identification Using Machine Learning Algorithm for Improving the Security in Public Places Using Closed Circuit Television, LEARNAUT – Upgraded Learning Environment and Web Application for Autism Environment Using AR-VR, VATTEN – A Smart Water Monitoring System, Segmentation and Classification of Glaucoma Using U-Net with Deep Learning Model, EDSYS – A Smart Campus Management System, TRACKME – Smart Watch for Women, Women’s Safety with a Smart Foot Device, Mental Health Monitoring Using Sentimental Analysis, Facilitation of Multipurpose Gloves for Impaired People, Extending OVS with Deep Packet Inspection Functionalities, Courier Service Management and Tracking Using Android Application, Detecting the Abandoned Borewell Using Image Processing, Smart Hospitals E-Medico Management System, ADROIT LIMB – Brain Controlled Artificial Limb, Autonomous Movable Packrat for Habitual Chores, Postal Bag Tracking and Alerting System, Applying Social Network Aided Efficient Live Streaming System for Reducing Server Overhead, Image Fusion of MRI Images Using Discrete Wavelet Transform, Probabilistic Flooding Based File Search in Peer to Peer Network, Multi Stage for Informative Gene Selection, Mutual Information in Stages for Informative Gene Selection, Computation of Mutual Information in Stages for Gene Selection from Microarray Data, and several other impactful studies in international journals and conferences indexed in Scopus, IEEE, and UGC; she has further contributed to innovation through consultancy projects such as AI-based pre-examination dental software and non-invasive sugar detection using eye retina, authored books and chapters including Fundamentals of Machine Learning, Management Analytics and Software Engineering, Recent Trends in Engineering and Technology – Edge Computing, and secured patents like Artificial Intelligence Based Heart Rate Monitoring Device for Sports Training, IOT Based Washing Machine for Agricultural Crops, Human Identity Recognition System Using Cloud Machine Learning and Deep Learning Algorithms, Gesture Based Anti-Rape Device, while also holding active memberships with IEEE, ISTE, IEI, UACEE, IAENG, and IACSIT; her academic journey has been marked by mentorship of award-winning projects, reviewer and session chair responsibilities in international conferences, and recognition such as the Best Faculty Advisor Award demonstrating her influence in advancing technology-driven solutions for healthcare, safety, smart systems, and education through research, teaching, patents, and community engagement.

Profile:  Google Scholar

Featured Publications:

Abebaw Agegne | Deep Learning | Best Researcher Award

Mr. Abebaw Agegne | Deep Learning | Best Researcher Award

Debark University | Ethiopia

Abebaw Agegne Engda is an Ethiopian scholar and academic who has devoted his professional career to the advancement of computer science education and research while fostering strong community engagement and service. He earned his Bachelor of Science degree in Computer Science from Debre Tabor University with high academic distinction, completing his studies with a focus on programming, systems, and applied computing. He later pursued a Master of Science degree in Computer Science at the University of Gondar, where he further deepened his knowledge of computational theory, advanced software systems, and the practical applications of computer science in solving real-world challenges. His academic excellence is demonstrated by his strong cumulative performance in both degrees, which reflect a commitment to rigor and perseverance. Professionally, he began his teaching journey as an Assistant Lecturer at Debark University, where he taught undergraduate computer science courses and contributed to shaping the foundational knowledge of young scholars. Later, he advanced to the position of Lecturer at Debark University, where he continues to teach computer science students across a variety of specializations, delivering core programming, system analysis, and applied computing courses while contributing to other departments with harmonized curriculum approaches. His students have consistently benefited from his structured teaching style, with many advancing to careers in high-level companies and industries, demonstrating the practical effectiveness of his teaching methodologies. He is capable of teaching a wide range of programming languages and has also been recognized for his leadership within his department, guiding academic processes, curriculum harmonization, and student development initiatives. His research works and community service contributions are documented and accessible through his ORCID profile, reflecting his engagement with both scholarly and societal responsibilities. Beyond academics, he is a person of discipline, patience, and strong work habits, qualities that enhance his ability to serve effectively in challenging environments and to maintain positive relationships with colleagues and students. He is fluent in Amharic and English, which allows him to engage in both local and international academic contexts, and his hobbies such as reading, traveling, counseling, and cultural exploration reflect a personality committed to lifelong learning, empathy, and service to others. Overall, his biography presents the portrait of a self-respecting, fair, and hardworking educator who combines academic achievement, teaching excellence, research contributions, and community service, making him a valuable asset in the advancement of computer science education in Ethiopia and beyond.

Profile: Orcid

Featured Publications:

Asnake, N. W., Ayalew, A. M., & Engda, A. A. (2025). Detection of oral squamous cell carcinoma cancer using AlexNet on histopathological images. Discover Applied Sciences.

Ayele, M. K., Baye, G. A., Yesuf, S. H., Engda, A. A., & Mitiku, E. T. (2025). Predicting stunting status among under five children in Ethiopia using ensemble machine learning algorithms. Scientific Reports.

Engda, A. A., Salau, A. O., & Ajala, O. (2025). Classical machine learning approaches for early hypertension risk prediction: A systematic review. Applied AI Letters.

Engda, A. A., Zewale, G. E., Mihret, B. G., & Adane, A. T. (2025). Developing pneumonia detection model using chest X-ray images: Deep learning approach. Preprint.

Engda, A. A. (2025). Detection of oral squamous cell carcinoma cancer using AlexNet on histopathological images. Conference paper.

Engda, A. A. (2025). Development of a case-based reasoning system for onion disease diagnosis and treatment. Proceedings of the IEEE International Conference on Emerging and Sustainable Technologies for Power and ICT in a Developing Society.