Zinah Saeed | Deep Learning | Best Researcher Award

Ms. Zinah Saeed | Deep Learning | Best Researcher Award

Universiti Sains Malaysia | Iraq

Saeed ZR is a dedicated researcher and academic with a strong background in computer science, networking technology, and innovative applications of artificial intelligence, currently pursuing his doctoral studies in computer science at the School of Computer Sciences, Universiti Sains Malaysia, after completing a master’s degree in networking technology at Universiti Teknikal Malaysia Melaka and a bachelor’s degree in computer science at Mustansiriyah University in Baghdad, building his academic journey on a foundation of technical expertise and analytical thinking, his research interests cover metaheuristic algorithms, artificial intelligence, deep learning, gesture recognition, assistive technologies, human–computer interaction, and networking security, he has contributed to the academic community with impactful publications including a hybrid improved IRSO–CNN algorithm for accurate recognition of dynamic gestures in Malaysian sign language, a systematic review on systems-based sensory gloves for sign language pattern recognition, and research on improving cloud storage security using three layers of cryptography algorithms, his professional journey includes significant teaching experience as a lecturer at the Iraqi Police Academy where he worked to advance education and training, and his ongoing research and doctoral studies have strengthened his ability to design, implement, and test intelligent systems addressing real-world challenges, his technical skills encompass proficiency in computer software, Microsoft Office applications, and operating systems across Windows and Mac environments, alongside practical programming expertise in Python for scripting and data processing, he is also experienced with widely used research and software tools such as Jupyter, Colab, Git, SPSS, and basic MATLAB, beyond his professional life he nurtures a passion for reading, research, and continuous learning, qualities that support his growth as a thoughtful academic and innovative researcher, his multidisciplinary focus, combined with a strong commitment to impactful scientific contributions, reflects a future-oriented career in advancing artificial intelligence and human-centered technologies.

Profile: Google Scholar

Featured Publications:

Saeed, Z. R., Ibrahim, N. F., Zainol, Z. B., & Mohammed, K. K. (2025). A hybrid improved IRSO–CNN algorithm for accurate recognition of dynamic gestures in Malaysian sign language. Journal of Electrical and Computer Engineering, 2025(1), 6430675.

Saeed, Z. R., Zainol, Z. B., Zaidan, B. B., & Alamoodi, A. H. (2022). A systematic review on systems-based sensory gloves for sign language pattern recognition: An update from 2017 to 2022. IEEE Access, 10, 123358–123377.

Saeed, Z. R., Zakiah Ayop, N. A., & Baharon, M. R. (2018). Improved cloud storage security using three layers cryptography algorithms. International Journal of Computer Science and Information Security, 16(10), 11–18.

 

Tao Hu | Artificial Intelligence| Best Researcher Award

Dr. Tao Hu | Artificial Intelligence | Best Researcher Award

The Affiliated Yuyao Yangming Hospital of Medical School of Ningbo University | China

Dr. Tao Hu is a highly accomplished medical professional and researcher from China, serving at The Affiliated Yuyao Yangming Hospital of the Medical School of Ningbo University, with specialization in thyroid surgery, breast surgery, and anorectal surgery. Having completed his doctoral education in health sciences, Dr. Hu has developed an expertise in combining surgical practice with advanced computational methods, particularly artificial intelligence and machine learning applications in clinical diagnostics and predictive modeling. His professional experience includes independently completing over surgical operations and contributing to multiple provincial-level scientific research projects, including support from the Zhejiang Health Information Association Research Program , which highlights his ability to bridge medical practice with innovative research applications. Dr. Hu’s research interests lie primarily in developing predictive tools that integrate clinical information data with artificial intelligence to forecast disease occurrence, progression, and postoperative risks, especially in thyroid carcinoma, where his recent work has introduced novel models for preoperative risk stratification and lymph node metastasis prediction. His research skills are demonstrated through proficiency in clinical data analysis, ultrasound imaging interpretation, radiomics, and the application of machine learning frameworks to enhance diagnostic accuracy and surgical decision-making. In recent years, Dr. Hu has published several impactful articles in high-quality, peer-reviewed journals such as Endocrine, Frontiers in Endocrinology, and the Journal of Clinical Ultrasound, marking him as a significant contributor to evidence-based surgical practices. While his awards and honors primarily reflect academic and clinical achievements, his recognition through this nomination underscores his growing international reputation as a leader in health sciences research. In conclusion, Dr. Hu’s blend of clinical excellence, innovative research in artificial intelligence applications, and dedication to improving surgical outcomes make him a highly deserving recipient of the Best Researcher Award, as his work holds great promise for advancing both scientific knowledge and patient care globally.

Profile:  Orcid

Featured Publications:

Hu, T., Cai, Y., Zhou, T., Zhang, Y., Huang, K., Huang, X., Qian, S., Wang, Q., & Luo, D. (2025). Machine learning‐based prediction of lymph node metastasis and volume using preoperative ultrasound features in papillary thyroid carcinoma. Journal of Clinical Ultrasound. Advance online publication.

Hu, T., Zhou, T., Zhang, Y., Zhou, L., Huang, X., Cai, Y., Qian, S., Huang, K., & Luo, D. (2024). The predictive value of the thyroid nodule benign and malignant based on the ultrasound nodule‐to‐muscle gray‐scale ratio. Journal of Clinical Ultrasound, 52(1).

Zhao, L., Hu, T., Cai, Y., Zhou, T., Zhang, W., Wu, F., Zhang, Y., & Luo, D. (2023). Preoperative risk stratification for patients with ≤ 1 cm papillary thyroid carcinomas based on preoperative blood inflammatory markers: Construction of a dynamic predictive model. Frontiers in Endocrinology, 14, 1254124.

Zhou, T., Xu, L., Shi, J., Zhang, Y., Lin, X., Wang, Y., Hu, T., Xu, R., Xie, L., & Sun, L., et al. (2023). US of thyroid nodules: Can AI-assisted diagnostic system compete with fine needle aspiration? European Radiology. Advance online publication.

Zhou, T., Hu, T., Ni, Z., Yao, C., Xie, Y., Jin, H., Luo, D., & Huang, H. (2023). Comparative analysis of machine learning-based ultrasound radiomics in predicting malignancy of partially cystic thyroid nodules. Endocrine. Advance online publication.