Qolby Sabrina | Material science | Best Researcher Award


Warning: Undefined variable $insensitive in /home/u792129758/domains/sciencefather.com/public_html/mechanics-conferences/wp-content/plugins/internal-link-building-plugin/internal_link_building.php on line 201

Warning: Undefined variable $insensitive in /home/u792129758/domains/sciencefather.com/public_html/mechanics-conferences/wp-content/plugins/internal-link-building-plugin/internal_link_building.php on line 202

Mrs. Qolby Sabrina | Material science | Best Researcher Award

Junior Researcher at National Research and Innovation Agency, Indonesia

[Name] is a dedicated researcher specializing in solid polymer electrolytes and biopolymer materials for energy applications. With a strong foundation in physics, they earned a Masterā€™s degree from the University of Indonesia and are currently pursuing doctoral studies at Osaka University under the prestigious JSPS RONPAKU fellowship. They have contributed significantly to material science, particularly in lithium-ion battery research, through their work at Indonesia’s leading research institutions, including the National Research and Innovation Agency (BRIN). Their academic and professional journey exemplifies commitment to advancing sustainable energy solutions.

Publication Profile

scholar

EducationšŸŽ“

Bachelor’s in Physics from State Islamic University Syarif Hidayatullah, Indonesia, in July 2011. Ā Master’s in Physics from the University of Indonesia in June 2014, where they deepened their knowledge of material sciences. Currently pursuing a Ph.D. in Material Science at Osaka University, Japan, from 2022 onward, focusing on advanced research in energy materials. Ā Selected as a RONPAKU Fellow by the Japan Society for the Promotion of Science (JSPS) in 2021, enhancing their research exposure and international collaboration skills. šŸ§¬

ExperiencešŸ”¬Ā 

Researcher at the Indonesian Institute of Sciences (LIPI) from 2015 to 2022, leading projects on advanced materials and energy applications. Since 2022, Researcher at the National Research and Innovation Agency (BRIN), focusing on the development of solid polymer electrolytes for energy storage solutions. Based in Tangerang Selatan, Indonesia, they work within BRIN’s advanced materials research hub, collaborating on cutting-edge innovations in sustainable energy. šŸ›

Awards and HonorsšŸ…Ā 

JSPS RONPAKU Fellowship (2021) awarded by the Japan Society for the Promotion of Science, facilitating dissertation-based Ph.D. research. Ā Recognition from the Indonesian Institute of Sciences for contributions to material science research in Indonesia. Ā Honored for innovation and commitment to sustainable energy research through advanced material development at BRIN. Ā Contributed to multiple research publications and projects that aim to solve pressing energy storage challenges. šŸŽ–

Research FocusšŸ”‹

Solid polymer electrolytes tailored for high-efficiency lithium-ion battery applications, addressing energy storage challenges. Exploration of biopolymer membranes for eco-friendly energy materials, aligning with sustainability goals in energy sectors. Ā Research includes advanced characterization and synthesis of materials for improved battery performance and durability. Dedicated to enhancing battery technology and sustainable material applications to support green energy transitions. šŸŒ±

PublicationĀ  Top Notes

“Preparation and characterization of nanofibrous cellulose as solid polymer electrolyte for lithium-ion battery applications”
Q Sabrina, CR Ratri, A Hardiansyah, T Lestariningsih, A Subhan, A Rifai, …

Published in RSC Advances, 2021 (Vol. 11, Issue 37), pp. 22929-22936

Citations: 26

Summary: This study explores the development of nanofibrous cellulose-based solid polymer electrolytes for improved lithium-ion battery performance.

“Karakteristik Morfologi Permukaan Pada Polimer PVdF-LiBOB-ZrO2 dan Potensinya untuk Elektrolit Baterai Litium”
EM Wigayati, I Purawiardi, Q Sabrina

Published in Jurnal Kimia dan Kemasan, 2018 (Vol. 40, Issue 1), pp. 1-8

Citations: 13

Summary: Research focuses on the surface morphology characteristics of PVdF-LiBOB-ZrO2 polymers, highlighting their potential in lithium-ion battery electrolytes.

“Penambahan TiO2 dalam Pembuatan Lembaran Polimer Elektrolit Berpengaruh Terhadap Konduktivitas dan Kinerja Baterai Lithium”
T Lestariningsih, Q Sabrina, N Majid

Published in J. Mater. dan Energi Indones, 2017 (Vol. 7, Issue 1), pp. 31-37

Citations: 12

Summary: This study evaluates the impact of TiOā‚‚ addition on the conductivity and performance of lithium battery polymer electrolytes.

“Structure, thermal and electrical properties of PVDF-HFP/LiBOB solid polymer electrolyte”
T Lestariningsih, Q Sabrina, CR Ratri, I Nuroniah

Published in Journal of Physics: Conference Series, 2019 (Vol. 1191, Issue 1), 012026

Citations: 9

Summary: This paper examines the structural, thermal, and electrical properties of PVDF-HFP/LiBOB solid polymer electrolytes for energy applications.

“The effect of (TiO2 and SiO2) nano-filler on solid polymer electrolyte based LiBOB”
Q Sabrina, A Sohib, T Lestariningsih, CR Ratri

Published in Journal of Physics: Conference Series, 2019 (Vol. 1191, Issue 1), 012028

Citations: 8

Summary: Analyzes the effects of TiOā‚‚ and SiOā‚‚ nano-fillers on the performance of LiBOB-based solid polymer electrolytes.

“Characterization of pore and crystal structure of synthesized LiBOB with varying quality of raw materials as electrolyte for lithium-ion battery”
T Lestariningsih, CR Ratri, EM Wigayati, Q Sabrina

Published in AIP Conference Proceedings, 2016 (Vol. 1711, Issue 1)

Citations: 8

Summary: Investigates the pore and crystal structures of LiBOB synthesized using different quality raw materials for lithium-ion battery applications.

“Study the synthesis of LiBOB compounds using lithium sources from sea water”
T Lestariningsih, Q Sabrina, I Nuroniah, B Prihandoko, E Marti Wigayati, …

Published in Journal of Physics: Conference Series, 2019 (Vol. 1282, Issue 1), 012044

Citations: 7

Summary: Research on synthesizing LiBOB from lithium sources extracted from seawater for use in battery electrolytes.

“Fabrication of solid polymer electrolyte based on carboxymethyl cellulose complexed with lithium acetate salt as Lithiumā€ion battery separator”
DA Darmawan, E Yulianti, Q Sabrina, K Ishida, AW Sakti, H Nakai, …

Published in Polymer Composites, 2024 (Vol. 45, Issue 3), pp. 2032-2049

Citations: 6

Summary: This paper describes the fabrication of carboxymethyl cellulose-based solid polymer electrolytes, enhancing lithium-ion battery separators.

“Brine water as lithium source in the synthesis of LiBOB electrolyte for lithium-ion battery application”
T Lestariningsih, Q Sabrina, CR Ratri, LH Lalasari

Published in AIP Conference Proceedings, 2021 (Vol. 2382, Issue 1)

Citations: 6

Summary: Utilizes brine water as a lithium source in the synthesis of LiBOB electrolytes for lithium-ion batteries.

“Compositional effect investigation by addition PEG, PEO plasticiser of LiBOB based solid polymer electrolyte for lithium ion batteries”
Q Sabrina, CR Ratri

Published in AIP Conference Proceedings, 2017 (Vol. 1868, Issue 1)

Citations: 6

Summary: Studies the impact of adding PEG and PEO plasticizers on the conductivity of LiBOB-based solid polymer electrolytes for battery applications.

Conclusion

This candidate stands out as a compelling nominee for the Best Researcher Award. Their dedication to advancing materials science, particularly in sustainable energy applications, paired with international recognition through the RONPAKU fellowship, showcases their high potential and dedication. With continued focus on high-impact publishing and community involvement, they are likely to make substantial contributions to the field, making them an excellent candidate for this award.

Yuecun wang | nanomechanics of semiconductor | Best Researcher Award


Warning: Undefined variable $insensitive in /home/u792129758/domains/sciencefather.com/public_html/mechanics-conferences/wp-content/plugins/internal-link-building-plugin/internal_link_building.php on line 201

Warning: Undefined variable $insensitive in /home/u792129758/domains/sciencefather.com/public_html/mechanics-conferences/wp-content/plugins/internal-link-building-plugin/internal_link_building.php on line 202

Assoc Prof Dr. Yuecun wang | nanomechanics of semiconductor | Best Researcher Award

Associate Professor at Xi’an Jiaotong University, China

Yue Wang is an accomplished Assistant Professor at Xiā€™an Jiaotong Universityā€™s School of Material Science and Engineering. With a deep focus on nanomechanics and electrochemical reactions, his research has contributed significantly to materials science, particularly in magnesium alloys and battery technologies. Wang completed his Ph.D. in 2018, building on extensive hands-on experience with TEM and other nanotechnology techniques. He is a recipient of numerous prestigious awards and has several high-impact publications in journals like Nature Communications and Science. His work pushes the boundaries of materials science, enabling innovations in corrosion resistance and energy storage. šŸ§ŖšŸ“ššŸ”¬

 

Publication Profile

EducationšŸŽ“šŸ“–šŸŒ

Yue Wang holds a Ph.D. in Materials Science and Engineering from Xiā€™an Jiaotong University, where he started his studies in 2013. He completed a Bachelorā€™s in the same field from Northwestern Polytechnical University in 2013. He was also a visiting student at Lawrence Berkeley National Lab, University of California, Berkeley, from February 2017 to February 2018. During this period, he gained valuable exposure to cutting-edge research environments, broadening his knowledge of nanomaterials and real-time electrochemical reactions. His academic journey showcases a strong foundation in both theoretical and applied materials science.

ExperiencešŸ«šŸ§‘ā€šŸ«šŸ› ļø

Yue Wang has been with Xiā€™an Jiaotong Universityā€™s School of Material Science and Engineering since 2018, where he now serves as a tenured Assistant Professor. Prior to his tenure, he worked extensively in in-situ environmental TEM and nanomechanical testing, producing significant contributions to battery technologies and corrosion resistance. His research focuses on Si-based materials, Mg alloys, and novel microscopy techniques. He also served as a Teaching Assistant at the university, where he taught the course on mechanical properties of materials. His career reflects a strong emphasis on research and education in materials science.

Awards and HonorsšŸ†

Yue Wang has received several prestigious awards throughout his career. He was recognized for his high-impact contributions in materials science, including publishing in leading journals such as Science and Nature Communications. His innovative research in the field of nanomechanics and corrosion resistance has earned him multiple research grants and distinctions within academic circles. He has also been an invited speaker at several international conferences, where his work on Si-based materials and Mg alloys has been widely lauded. His dedication to pushing the boundaries of materials research continues to earn him accolades. šŸ„‡šŸŽ–ļø

Research Focus šŸ”¬šŸ§²šŸ“

Yue Wang’s research is primarily centered on the mechanical properties and nanostructures of Si-based materials and metals. His work utilizes in-situ quantitative nanomechanics to probe these materials at the micro and nano levels. Wang’s expertise extends to environmental TEM studies, particularly in observing real-time electrochemical reactions in lithium/sodium ion batteries and developing anti-corrosion techniques for magnesium alloys. He also specializes in advanced microscopy, nanomechanical testing, and fabrication using Focused Ion Beam (FIB) technology, contributing to improved corrosion resistance and battery efficiency.

PublicationĀ  Top Notes

  • Exceptional plasticity in the bulk single-crystalline van der Waals semiconductor InSe
    Science, 2020, 369 (6503), 542-545
    Citations: 220
    This work explores the mechanical properties of InSe, a van der Waals semiconductor, highlighting its exceptional plasticity, a critical factor for flexible electronics.
  • Turning a native or corroded Mg alloy surface into an anti-corrosion coating in excited CO2
    Nature Communications, 2018, 9 (1), 4058
    Citations: 98
    The paper introduces a method to enhance the corrosion resistance of Mg alloys through a CO2-based treatment.
  • In situ TEM study of deformation-induced crystalline-to-amorphous transition in silicon
    NPG Asia Materials, 2016, 8 (7), e291-e291
    Citations: 81
    A detailed study using transmission electron microscopy (TEM) to observe how crystalline silicon transitions to an amorphous state under mechanical stress.
  • Chestnut-like SnO2/C nanocomposites with enhanced lithium-ion storage properties
    Nano Energy, 2016, 30, 885-891
    Citations: 66
    This research investigates nanocomposites for improving lithium-ion battery performance.
  • Tensionā€“compression asymmetry in amorphous silicon
    Nature Materials, 2021, 20 (10), 1371-1377
    Citations: 52
    The work explores the mechanical behavior of amorphous silicon, especially the asymmetry between tension and compression.
  • High-throughput screening of 2D van der Waals crystals with plastic deformability
    Nature Communications, 2022, 13 (1), 7491
    Citations: 45
    This paper focuses on the search for two-dimensional van der Waals materials with superior plasticity for next-generation flexible electronics.
  • Thermal treatment-induced ductile-to-brittle transition of submicron-sized Si pillars fabricated by focused ion beam
    Applied Physics Letters, 2015, 106 (8)
    Citations: 36
    The study analyzes the impact of thermal treatment on the mechanical properties of silicon structures at the submicron scale.
  • Ceramic nanowelding
    Nature Communications, 2018, 9 (1), 96
    Citations: 34
    This paper discusses the novel concept of ceramic nanowelding, which could have implications for nanomanufacturing and electronics.
  • In situ transmission electron microscopy study of the electrochemical sodiation process for a single CuO nanowire electrode
    RSC Advances, 2016, 6 (14), 11441-11445
    Citations: 26
    In this work, the authors investigate the sodiation process in copper oxide nanowires, which is relevant for battery technology.
  • In situ TEM observing structural transitions of MoS2 upon sodium insertion and extraction
    RSC Advances, 2016, 6 (98), 96035-96038
    Citations: 21
    This research reveals how MoS2 structures change during sodium ion insertion, providing insights for energy storage applications.

Conclusion

The candidate’s expertise in nanomechanics, in-situ TEM, and nanomaterial testing positions them as a leader in their field, making them a worthy candidate for the Best Researcher Award. Their ability to innovate and apply cutting-edge techniques in materials science, combined with their teaching prowess, sets them apart. Expanding their international collaborations and research impact would further elevate their profile for such prestigious recognition.

Girish Joshi | Polynmer Composites | Best Scholar Award


Warning: Undefined variable $insensitive in /home/u792129758/domains/sciencefather.com/public_html/mechanics-conferences/wp-content/plugins/internal-link-building-plugin/internal_link_building.php on line 201

Warning: Undefined variable $insensitive in /home/u792129758/domains/sciencefather.com/public_html/mechanics-conferences/wp-content/plugins/internal-link-building-plugin/internal_link_building.php on line 202

Prof. Girish Joshi | Polynmer Composites | Best Scholar Award

Prof. Institute of Chemical Technology Mumbai Marathwada campus Jalna , Gabon

Prof. Girish Mukundrao Joshi, a Full Professor of Engineering Physics and Materials at ICT Mumbai’s off-campus in Marathwada Jalna, boasts over 20 years of teaching experience. He has been a visiting scientist at UCLM, Spain, and has published 150 articles in prestigious international journals, holding two granted patents. An APA life member, fellow of the Maharashtra Academy of Sciences, and life fellow of the Indian Chemical Society, he received the National Best Teacher Award by Krishmurthy Trust in 2017. He has mentored seven doctorates, executed major research projects, and serves on various editorial and expert boards. Recently, he was appointed to CIPET’s Innovation Cell and DBATU’s Academic Council.

 

Professional Profiles:

Academic and Professional Background šŸŽ“

Prof. Girish Mukundrao Joshi is currently a Full Professor in Engineering Physics and Materials at ICT Mumbai’s off-campus Marathwada Jalna, Maharashtra. With over 20 years of teaching experience, he has significantly contributed to the academic field. He has served as a visiting scientist at UCLM, Spain, in 2009 and 2016.

Publications and Patents šŸ“š

Prof. Joshi has published 150 articles in reputed international journals and holds credit for two granted patents. His scholarly work is widely recognized, showcasing his expertise and dedication to research.

Memberships and Fellowships šŸ…

APA Life Member (2024)Fellow of the Maharashtra Academy of Sciences (2019)Life Fellow of the Indian Chemical Society (2021)

Awards and Recognition šŸ†

He was honored with the National Best Teacher Award by Krishmurthy Trust, Tirupati, in 2017. Recently, he received the Best Professor Award from Modern Plastic India in 2024.

Teaching and Mentorship šŸ‘©ā€šŸ«

Prof. Joshi is celebrated for his teaching tenure at VIT Vellore (2010-2018). He has guided seven doctorates and is currently mentoring four more. His dedication to student development is commendable.

Research Projects šŸ”¬

He has led four significant research projects as the chief investigator for organizations such as the Naval Research Board (NRB), DRDO, Dover India Industry, and Savitra Printer Nashik, under CSR-UGC-DAE.

Editorial and Advisory Roles šŸ“–

Prof. Joshi serves on the editorial board of Modern Plastic India Magazine and is an expert board member for the Journal of Physicascripta – IOP. He is also a Board of Studies (BOS) member for SRTMU, Nanded, and ICT Mumbai.

āœļøPublications Top Note :

Enhanced Physioā€Chemical Properties of PMMA/PS Polymer Blends by DC Glow Discharge Plasma Treated K2TI6O13 for Electronic Applications

Journal: ChemistrySelect

Date: 2024-07-18

DOI: 10.1002/slct.202401048

Contributors: Shankar S. Humbe, Girish M. Joshi, R. R. Deshmukh

2. Hydrophobic Polymer Nano Hybrid Ternary Composite Electrode for Nanomolar Tracing of Cd2+ Ions

Journal: Journal of Applied Polymer Science

Date: 2024-04-20

DOI: 10.1002/app.55249

Contributors: Savita S. Mane, Girish M. Joshi

3. Influence of Hybrid Filler on Charge Conduction and Storage Performance of Polyvinyl Chloride/Nitrocellulose Blend for Hybrid Electrolyte Application

Journal: ChemistrySelect

Date: 2024-03-18

DOI: 10.1002/slct.202304421

Contributors: Pratibha S. Jadhav, Girish M. Joshi

4. Nanostructural Characterization of Luminescent Polyvinyl Alcohol / Graphene Quantum Dots Nanocomposite Films

Date: 2023-11

DOI: 10.20944/preprints202311.0500.v1

Contributors: Elumalai D, RodrĆ­guez B, Kovtun G, Hidalgo P, MĆ©ndez B, Kalleemula S, Joshi GM, Cuberes MT

5. Recent Scenario of Surfactants Modified Graphene and Its Derivativesā€Based Polymer Nanocompositesā€”Review

Journal: Macromolecular Chemistry and Physics

Date: 2023-11

DOI: 10.1002/macp.202300122

Contributors: Shreya P. Yeole, Pratibha S. Jadhav, Girish M. Joshi

Prof. CP Wong | Materials Science | Best Researcher Award


Warning: Undefined variable $insensitive in /home/u792129758/domains/sciencefather.com/public_html/mechanics-conferences/wp-content/plugins/internal-link-building-plugin/internal_link_building.php on line 201

Warning: Undefined variable $insensitive in /home/u792129758/domains/sciencefather.com/public_html/mechanics-conferences/wp-content/plugins/internal-link-building-plugin/internal_link_building.php on line 202

Prof. CP Wong | Materials Science | Best Researcher Award

Prof. CP Wong , Georgia Tech, United States

Prof. CP Wong is academic and researcher in the field of renewable energy, holds a PhD in Bio systems Engineering from Kangwon National University, South Korea. His academic journey has been marked by a profound dedication to advancing solar energy technologies, specifically in solar thermal harvesting and its integration into agricultural and architectural applications.

 

Professional Profiles:

ORCID

šŸ† Nominations Open for 2023 LM Service Award

Nominations are now being accepted for the prestigious IEEE Individual Life Member (LM) Service Award 2023. To make a nomination, aNominator must submit the form, as self-nominations are not acceptable. Additionally, the nomination must be accompanied by a recommendation from the Nominator.

Eligibility Criteria:

Life Members must have demonstrated significant service to the LMAG and Life Member community from the time of becoming a Life Member until December 31, 2022. Regional Awardees will be judged by the Regional Awards Committee, with winners receiving a commemorative plaque. Individuals are eligible for this award every two years. All Regional Awardees will be considered by the Regional Life Member Committee, and the LMC Awards Committee will select a Global 2023 Individual Service Award winner. Global winners will receive a plaque and expenses to travel to an appropriate event for the award ceremony. Individuals are eligible for this award every three years.