Xuejie Gao | From Liquid to Solid | Women Researcher Award

Assoc. Prof. Dr Xuejie Gao | From Liquid to Solid | Women Researcher Award

Professor at Dalian Polytechnic University , China

🚀 Dr. Xuejie Gao is an Associate Professor at Dalian Polytechnic University, specializing in 3D printing for lithium-ion and solid-state batteries. 📚 Holding a Ph.D. in Mechanical and Material Engineering from Western University, she leads innovative battery technology research. 🔋 Her work focuses on sustainable energy solutions, advancing energy storage efficiency. ✍️ Dr. Gao has authored high-impact publications in top-tier journals like Advanced Materials and Energy Storage Materials. 🌍 She collaborates with academic and industrial leaders, driving breakthroughs in next-generation battery technologies.

Publication Profile

scopus

Education🎓

Dr. Xuejie Gao earned her Ph.D. in Mechanical and Material Engineering from Western University, where she focused on 3D printing applications in battery development. 🧪 Her research emphasized transitioning from liquid to solid-state batteries to improve energy efficiency. 📈 Dr. Gao completed her undergraduate and master’s studies in Material Science, laying the foundation for her advanced research in sustainable energy storage. 🌱 She received multiple scholarships during her academic journey, highlighting her dedication and exceptional performance in material engineering and energy applications.

Experience👩‍🏫 

Dr. Gao serves as an Associate Professor at Dalian Polytechnic University, engaging in cutting-edge research and teaching. 💡 She has led six ongoing projects and successfully completed three, emphasizing battery innovation. ⚙️ Dr. Gao collaborates with the industry, contributing to two sponsored projects involving battery manufacturing advancements. 🏭 Her expertise extends to guiding Ph.D. students and acting as a Youth Editorial Board member for Renewables and eScience. 🌏 Dr. Gao bridges academia and industry, fostering advancements in sustainable battery technologies.

Awards and Honors🏆 

Dr. Gao has received accolades for her pioneering work in battery technology. 🌟 She is a CTAPI Fellow, recognized for her contributions to energy storage and advanced materials. 📜 Dr. Gao’s publications in high-impact journals reflect her leadership in the field. 🧑‍🔬 Her patents in process further cement her innovative contributions. 🌍 As a member of editorial boards and industry collaborations, Dr. Gao’s influence extends across academic and commercial sectors. 💼 Her role in shaping the next generation of batteries has garnered widespread recognition.

Research Focus🔬 

Dr. Gao’s research targets the development of 3D-printed lithium-ion and solid-state batteries. ⚡ Her focus lies in enhancing battery performance, reducing manufacturing costs, and fostering sustainability. 🧩 Key areas include material development, advanced fabrication techniques, and energy efficiency improvements. 🏭 Collaborating with Shanghai Carbon Industrial Co., she applies her findings to real-world applications. 🚘 Dr. Gao’s innovations aim to transform industries such as electric vehicles and renewable energy storage. 📊 Her interdisciplinary approach integrates material science, engineering, and energy technologies.

Publications 📖

“Separator engineering: Assisting lithium salt dissociation and constructing LiF-rich solid electrolyte interphases for high-rate lithium metal batteries” (2025): Focuses on improving the efficiency of lithium metal batteries by enhancing lithium salt dissociation and creating stable solid electrolyte interphases (SEI).

“Long-lifespan thin Li anode achieved by dead Li rejuvenation and Li dendrite suppression for all-solid-state lithium batteries” (2024): This study introduces methods for rejuvenating dead lithium and suppressing lithium dendrites to improve the lifespan and safety of solid-state batteries.

“Carboxymethyl chitosan composited poly(ethylene oxide) electrolyte with high ion conductivity and interfacial stability for lithium metal batteries” (2024): Examines an electrolyte composite that enhances ion conductivity and stability, crucial for improving the performance and longevity of lithium metal batteries.

“Natural biopolymers derived kinematic and self-healing hydrogel coatings to continuously protect metallic zinc anodes” (2024): Investigates self-healing hydrogel coatings that protect zinc anodes in batteries, enhancing their stability and lifespan.

“Phosphotungstic acid decorated free-standing electrode accelerates polysulfides conversion for high-performance flexible Li–S batteries” (2024): Introduces a novel electrode material that accelerates the conversion of polysulfides, improving the performance of lithium-sulfur (Li-S) batteries.

“All-in-one Janus covalent organic frameworks separator as fast Li nucleator and polysulfides catalyzer in lithium-sulfur batteries” (2024): This research presents a separator made of covalent organic frameworks that acts as both a lithium nucleator and a catalyst for polysulfides in Li-S batteries.

“ZIF-67-Derived Flexible Sulfur Cathode with Improved Redox Kinetics for High-Performance Li-S Batteries” (2024): Focuses on a new sulfur cathode derived from ZIF-67, which improves redox kinetics and enhances the performance of Li-S batteries.

“Lignin-reinforced PVDF electrolyte for dendrite-free quasi-solid-state Li metal battery” (2024): This study uses lignin-reinforced PVDF electrolyte to prevent dendrite formation, improving the performance of quasi-solid-state lithium metal batteries.

“Dual-single-atoms of Pt–Co boost sulfur redox kinetics for ultrafast Li–S batteries” (2024): Highlights the use of Pt-Co single atoms to enhance sulfur redox kinetics, enabling faster and more efficient Li-S batteries.

“Ester-Enhanced Inorganic-Rich Solid Electrolyte Interphase Enabled Dendrite-Free Fast-Charging Lithium Metal Batteries” (2024): Focuses on creating a dendrite-free, fast-charging lithium metal battery by enhancing the solid electrolyte interphase with esters and inorganic materials.

Conclusion

Dr. Gao Xuejie’s expertise in advanced battery technologies, particularly her research on solid-state batteries and the application of 3D printing for energy storage, positions her as an exceptional candidate for the Best Researcher Award. Her continuous pursuit of innovation in the energy sector, along with her substantial academic achievements, makes her a standout researcher deserving of recognition in this category.

JIBIN K P | Polymer nanocomposites | Best Scholar Award

Dr.  Mahatma Gandhi University, India

Dr. Jibin Keloth Paduvilan is a highly accomplished researcher in the field of polymer nanocomposites and nanomaterials, with significant contributions to the study of rubber nanocomposites, graphene oxide, and environmentally friendly materials. He holds a Ph.D. in Chemistry from Mahatma Gandhi University, Kottayam, Kerala, where he also serves as a Senior Researcher. With over seven years of R&D experience, including a patent for green tire applications and multiple publications in esteemed journals, Dr. Jibin’s work is at the forefront of advanced material science. Additionally, he is an Editorial Assistant for NANOSO Journal, Elsevier.

Professional Profiles:

Education 🎓 

Doctor of Philosophy (Chemistry)
🎓 2019-2024🏫 School of Chemical Sciences, Mahatma Gandhi University, Kottayam, KeralaDr. Jibin pursued his Ph.D. in Chemistry, focusing on cutting-edge research in nanostructured materials and their applications. Master of Science in Chemistry 🎓 2013-2015🏫 Mahatma Gandhi University, Kottayam, Kerala With a first rank and an impressive 87% score, Dr. Jibin completed his M.Sc. in Chemistry, where he developed a deep understanding of physical and chemical properties of materials. Bachelor of Science in Chemistry 🎓 2010-2013 🏫 Kannur University, Kerala Dr. Jibin completed his B.Sc. with a solid foundation in chemistry, achieving an 82% score.Higher Secondary Examination 🎓 2008-2010 🏫 Kerala Higher Secondary Education Board Secondary School Leaving Certificate 🎓 2008 🏫 General Education Department

Work Experience

Senior Researcher
📅 January 2019 – Present
🏫 School of Chemical Sciences, Mahatma Gandhi University, Kottayam, Kerala, India
Dr. Jibin Keloth Paduvilan has been serving as a Senior Researcher, contributing significantly to the field of polymer nanocomposites and nanomaterials. His research focuses on developing innovative materials for advanced applications, with a strong emphasis on sustainable and environmentally friendly solutions.Editorial Assistant to NANOSO Journal, Elsevier
📅 January 2019 – Present
📚 NANOSO Journal, Elsevier
Dr. Jibin has been an Editorial Assistant for NANOSO Journal, where he collaborates with leading researchers and ensures the publication of high-quality research in the field of nanoscience and nanotechnology.Junior Research Fellow
📅 October 2017 – October 2019
🏫 International and Inter University Centre for Nanoscience and Nanotechnology, Mahatma Gandhi University, Kottayam, Kerala, India
During his tenure as a Junior Research Fellow, Dr. Jibin honed his skills in the synthesis and characterization of nanomaterials, laying the foundation for his future research endeavors.

Research for Best Scholar Award: Evaluation of Dr. JIBIN K P

Strengths for the Award:

  1. Extensive Research Experience:
    • With over seven years in R&D, Dr. JIBIN K P has demonstrated significant expertise in polymer nanocomposites, hybrid nanostructures, and nanomaterial applications. This extensive experience highlights their deep understanding of material science and innovative research capabilities.
  2. Diverse Research Interests:
    • Their research spans a range of topics including graphene oxide, 2D materials, biopolymers, and environment-friendly materials. This breadth of interest indicates a holistic approach to material science and a commitment to advancing sustainable and cutting-edge technologies.
  3. Notable Publications and Patent:
    • [Your Name] has published impactful research in high-quality journals such as Nanomaterials and has been granted a patent (No. 512432) for core shell structure reinforced natural rubber composites. This demonstrates their ability to translate research into practical and innovative solutions.
  4. Editorial Experience:
    • Serving as an Editorial Assistant to NANOSO Journal, [Your Name] has contributed to the academic community, further reflecting their expertise and engagement in the field of nanoscience and nanotechnology.
  5. Academic Excellence:
    • Their strong educational background, including a Ph.D. in Chemistry with a first-rank Master’s degree, underscores a solid foundation in the subject matter and a commitment to academic excellence.

Areas for Improvement:

  1. Broader Collaboration:
    • Expanding collaborative research efforts with international institutions could provide new perspectives and enhance the impact of their work on a global scale.
  2. Increased Focus on Emerging Trends:
    • Staying updated with emerging trends in material science and nanotechnology, such as advancements in AI applications or new nanomaterial synthesis techniques, could further enhance their research scope and relevance.
  3. Enhancing Public Engagement:
    • Increasing public and industry engagement through seminars, workshops, or popular science articles could elevate the visibility and societal impact of their research findings.

 

✍️Publications Top Note :

 

Advances and Future Outlook in Epoxy/Graphene Composites for Anticorrosive Applications

Authors: JS George, JK Paduvilan, N Salim, J Sunarso, N Kalarikkal, N Hameed

Journal: Progress in Organic Coatings

Volume: 162

Article Number: 106571

Year: 2022

Citations: 67

This article reviews the development of epoxy/graphene composites, emphasizing their potential in anticorrosive applications. The review covers various synthesis methods, the role of graphene in enhancing the anticorrosive properties, and the challenges in producing high-performance composites. The future outlook suggests that further research into functionalized graphene and large-scale production techniques could lead to more effective and commercially viable anticorrosive coatings.

Surface Modification of Wool Fabric Using Sodium Lignosulfonate and Subsequent Improvement in the Interfacial Adhesion of Natural Rubber Latex in the Wool/Rubber Composites

Authors: S Jose, S Thomas, KP Jibin, KS Sisanth, V Kadam, DB Shakyawar

Journal: Industrial Crops and Products

Volume: 177

Article Number: 114489

Year: 2022

Citations: 27

This study focuses on the surface modification of wool fabric using sodium lignosulfonate to improve its compatibility with natural rubber latex. The research highlights the enhanced interfacial adhesion in wool/rubber composites, which could be beneficial for the development of advanced textile materials.

Assessment of Graphene Oxide and Nanoclay Based Hybrid Filler in Chlorobutyl-Natural Rubber Blend for Advanced Gas Barrier Applications

Authors: J Keloth Paduvilan, P Velayudhan, A Amanulla, H Joseph Maria

Journal: Nanomaterials

Volume: 11, Issue 5

Article Number: 1098

Year: 2021

Citations: 25

This article examines the use of graphene oxide and nanoclay as hybrid fillers in chlorobutyl-natural rubber blends, focusing on their potential as gas barrier materials. The study demonstrates that the incorporation of these fillers significantly enhances the gas barrier properties, making the composites suitable for advanced applications in various industries.

Silica-Graphene Oxide Reinforced Rubber Composites

Authors: KP Jibin, V Prajitha, S Thomas

Journal: Materials Today: Proceedings

Volume: 34

Pages: 502-505

Year: 2021

Citations: 18

Conclusion:

Dr. JIBIN K P is a distinguished scholar with a robust track record in the field of polymer nanocomposites and nanotechnology. Their extensive research experience, notable publications, and innovative contributions such as the granted patent showcase their excellence and leadership in material science. Addressing areas for improvement, such as broadening collaborations and staying abreast of emerging trends, could further amplify their impact and recognition in the field. Their dedication and achievements make them a strong candidate for the Best Scholar Award, reflecting both their current excellence and future potential in advancing material science and nanotechnology.

Girish Joshi | Polynmer Composites | Best Scholar Award

Prof. Girish Joshi | Polynmer Composites | Best Scholar Award

Prof. Institute of Chemical Technology Mumbai Marathwada campus Jalna , Gabon

Prof. Girish Mukundrao Joshi, a Full Professor of Engineering Physics and Materials at ICT Mumbai’s off-campus in Marathwada Jalna, boasts over 20 years of teaching experience. He has been a visiting scientist at UCLM, Spain, and has published 150 articles in prestigious international journals, holding two granted patents. An APA life member, fellow of the Maharashtra Academy of Sciences, and life fellow of the Indian Chemical Society, he received the National Best Teacher Award by Krishmurthy Trust in 2017. He has mentored seven doctorates, executed major research projects, and serves on various editorial and expert boards. Recently, he was appointed to CIPET’s Innovation Cell and DBATU’s Academic Council.

 

Professional Profiles:

Academic and Professional Background 🎓

Prof. Girish Mukundrao Joshi is currently a Full Professor in Engineering Physics and Materials at ICT Mumbai’s off-campus Marathwada Jalna, Maharashtra. With over 20 years of teaching experience, he has significantly contributed to the academic field. He has served as a visiting scientist at UCLM, Spain, in 2009 and 2016.

Publications and Patents 📚

Prof. Joshi has published 150 articles in reputed international journals and holds credit for two granted patents. His scholarly work is widely recognized, showcasing his expertise and dedication to research.

Memberships and Fellowships 🏅

APA Life Member (2024)Fellow of the Maharashtra Academy of Sciences (2019)Life Fellow of the Indian Chemical Society (2021)

Awards and Recognition 🏆

He was honored with the National Best Teacher Award by Krishmurthy Trust, Tirupati, in 2017. Recently, he received the Best Professor Award from Modern Plastic India in 2024.

Teaching and Mentorship 👩‍🏫

Prof. Joshi is celebrated for his teaching tenure at VIT Vellore (2010-2018). He has guided seven doctorates and is currently mentoring four more. His dedication to student development is commendable.

Research Projects 🔬

He has led four significant research projects as the chief investigator for organizations such as the Naval Research Board (NRB), DRDO, Dover India Industry, and Savitra Printer Nashik, under CSR-UGC-DAE.

Editorial and Advisory Roles 📖

Prof. Joshi serves on the editorial board of Modern Plastic India Magazine and is an expert board member for the Journal of Physicascripta – IOP. He is also a Board of Studies (BOS) member for SRTMU, Nanded, and ICT Mumbai.

✍️Publications Top Note :

Enhanced Physio‐Chemical Properties of PMMA/PS Polymer Blends by DC Glow Discharge Plasma Treated K2TI6O13 for Electronic Applications

Journal: ChemistrySelect

Date: 2024-07-18

DOI: 10.1002/slct.202401048

Contributors: Shankar S. Humbe, Girish M. Joshi, R. R. Deshmukh

2. Hydrophobic Polymer Nano Hybrid Ternary Composite Electrode for Nanomolar Tracing of Cd2+ Ions

Journal: Journal of Applied Polymer Science

Date: 2024-04-20

DOI: 10.1002/app.55249

Contributors: Savita S. Mane, Girish M. Joshi

3. Influence of Hybrid Filler on Charge Conduction and Storage Performance of Polyvinyl Chloride/Nitrocellulose Blend for Hybrid Electrolyte Application

Journal: ChemistrySelect

Date: 2024-03-18

DOI: 10.1002/slct.202304421

Contributors: Pratibha S. Jadhav, Girish M. Joshi

4. Nanostructural Characterization of Luminescent Polyvinyl Alcohol / Graphene Quantum Dots Nanocomposite Films

Date: 2023-11

DOI: 10.20944/preprints202311.0500.v1

Contributors: Elumalai D, Rodríguez B, Kovtun G, Hidalgo P, Méndez B, Kalleemula S, Joshi GM, Cuberes MT

5. Recent Scenario of Surfactants Modified Graphene and Its Derivatives‐Based Polymer Nanocomposites—Review

Journal: Macromolecular Chemistry and Physics

Date: 2023-11

DOI: 10.1002/macp.202300122

Contributors: Shreya P. Yeole, Pratibha S. Jadhav, Girish M. Joshi