Aziza Kuldasheva | material science | Women Researcher Award

Ms. Aziza Kuldasheva | material science | Women Researcher Award

PhD at Wuhan University of technology, China

Aziza Kuldasheva is a dedicated civil engineering researcher and educator with extensive international experience. Holding a PhD position at Wuhan University of Technology in China, she has been deeply involved in advancing building materials and structural engineering. With fluency in multiple languages, including English and Russian, she effectively collaborates across diverse cultural and academic backgrounds. Aziza’s commitment to education is demonstrated through her roles as a lecturer and senior research worker at various prestigious institutions. Her passion for sustainable construction practices and innovative engineering solutions positions her as a key contributor to the field.

Publication Profile

orcid

Education 📚🎓

Aziza Kuldasheva earned her Bachelor’s degree with a GPA of 3.5 and a Master’s degree with a GPA of 3.9 from Samarkand State Architectural and Civil Engineering University in Uzbekistan. She further enhanced her expertise through a scientific internship at Harbin Engineering University in China and completed another Master’s degree at Riga Technical University in Latvia, achieving a GPA of 3.9. Currently, she is pursuing her PhD at Wuhan University of Technology, where she maintains a GPA of 3.54. Her academic journey reflects her strong foundation in civil engineering, supplemented by diverse international experiences that enrich her research and teaching methodologies.

Experience 🏗️🔧🌏

Aziza has a wealth of experience in civil engineering, beginning her career at Samarkand State Architectural and Civil Engineering University, where she served as an Assistant Lecturer, Lecturer, and Senior Research Worker in the Science-Research Laboratory of Building Materials. Between 2010 and 2018, she made significant contributions to various research projects, demonstrating leadership in her field. Aziza also worked as a Senior Research Worker at a similar laboratory in Riga, Latvia, gaining valuable insights into European engineering practices. Notably, she was an expert for the Ministry of Innovative Development of the Republic of Uzbekistan and participated in high-impact projects such as the nonlinear statistical model updating of prestressed concrete beams and bridge health monitoring assessments in Hubei, China. Her multifaceted roles reflect her commitment to advancing knowledge and technology in civil engineering.

Awards and Honors 🏆🎖️🌟

Aziza Kuldasheva has received numerous certificates and accolades throughout her academic and professional journey. She was honored with a certificate for her contributions to the BAU 2023 Exhibition of Building Materials in Germany, recognizing her commitment to innovation in the field. Additionally, she holds various training certificates, including those in quality laboratory testing, concrete technology, and inclusive growth for developing countries, showcasing her dedication to continuous professional development. Her expertise in building materials and color technologies has been validated through certifications from prestigious organizations, enhancing her credibility as a researcher and educator. These achievements underscore her impact on civil engineering and her commitment to improving construction practices, making her a respected figure in her field.

Research Focus 🔬🏗️

Aziza Kuldasheva’s research focuses on enhancing the safety and reliability of civil engineering structures, particularly through advanced modeling and analysis of building materials. Her recent projects include nonlinear statistical model updating and safety evaluations of long-span prestressed concrete beams, emphasizing her innovative approaches to structural engineering challenges. Aziza is particularly interested in the intersection of technology and sustainability in construction practices, aiming to develop effective solutions that address both functional and environmental concerns. Her participation in bridge health monitoring projects illustrates her commitment to real-world applications of her research. As a member of the Building Technology Center at Wuhan University of Technology, she collaborates with industry leaders to bridge the gap between academic research and practical engineering solutions. Aziza’s work not only contributes to academic knowledge but also seeks to enhance the resilience and sustainability of civil engineering practices globally.

Publication  Top Notes

Title: Single-cell transcriptional uncertainty landscape of cell differentiation

Authors: Nan Papili Gao, Olivier Gandrillon, András Páldi, Ulysse Herbach, Rudiyanto Gunawan, et al.

Publication Date: July 20, 2023

Journal: F1000Research

DOI: 10.12688/f1000research.131861.2

ISSN: 2046-1402

Conclusion

Aziza Kuldasheva is a strong candidate for the Women Researcher Award due to her academic achievements, diverse experience, and significant contributions to civil engineering research. By addressing areas for improvement, such as enhancing her publication record and increasing her engagement with the research community, she can further strengthen her position as a leading researcher in her field. Supporting her nomination for this award would not only recognize her efforts but also encourage her continued growth and contributions to engineering and technology, particularly in the context of women’s representation in research.

Jingfei Yin | high performance machining | Best Researcher Award

Assoc Dr.  Nanjing university of Aeronautics and Astronautics, china

Dr. Jingfei Yin is an Associate Professor at Nanjing University of Aeronautics and Astronautics with a Ph.D. from Dalian University of Technology. His research focuses on high-efficiency and precision machining of hard-to-machine materials, high-speed machining, and laser detection of subsurface damage. He has led or participated in over 10 national and provincial projects, published more than 20 academic papers, holds six patents, and has over 10 patents in progress. Dr. Yin is an editorial member of several high-impact journals and a senior member of the Chinese Mechanical Engineering Society. He is recognized for his pioneering work in ultrasonic-assisted drilling and subsurface damage detection.

 

Professional Profiles:

🎓 Academic and Professional Background

Dr. Jingfei Yin earned his PhD from Dalian University of Technology, under the supervision of Prof. Bi Zhang (CIRP Fellow). Currently, he serves as an Associate Professor at Nanjing University of Aeronautics and Astronautics. His research spans high-efficiency and precision machining of hard-to-machine materials, high-speed machining, and laser detection of subsurface damage. He has led or contributed to over 10 national and provincial projects, including those funded by the National Natural Science Foundation and the National Sci. & Tech. Major Project. Dr. Yin has published over 20 academic papers and is an invited reviewer for several high-level journals.

🚀 Research and Innovations:

🛠 Completed/Ongoing Research Projects:Completed three projects funded by the China Postdoctoral Foundation and Jiangsu Province Postdoctoral Foundation.Currently managing five ongoing projects from the National Natural Science Foundation of China, The Science Center for Gas Turbine, and Nanjing University of Aeronautics and Astronautics.📊 Citation Index: 12🏗 Consultancy/Industry Projects: Two industry projects.📚 Books Published (ISBN): None.🔑 Patents Published/Under Process:Published six patents with more than 10 patents under process.📝 Journals Published (SCI, Scopus, etc.): Over 20 articles.

📰 Editorial Appointments:

Early editorial member of the International Journal of Hydromechatronics (JIF: 5.3), Nanotechnology and Precision Engineering (JIF: 3.5), and two other Chinese journals (SCIE indexed).

🎓 Professional Memberships:

Senior member of the Chinese Mechanical Engineering Society and a member of the Chinese Society of Aeronautics and Astronautics.

🔬 Areas of Research:

High-efficiency and precision machining of hard-to-machine materials, high-speed machining, and laser detection of subsurface damage.

🌟 Contributions

Pioneered the mechanical machining of high-frequency ultrasonic-assisted drilling, making submillimeter holes in superhard ceramic matrix composites. Efficiency is elevated up to 10 times compared to current laser machining.Discovered the “skin effect” of subsurface damage distribution in materials subjected to high-speed machining, where damage depth decreases with increasing machining speed.Developed a novel non-destructive method of polarized laser scattering for detecting subsurface damage in materials with a sensitivity as high as 0.1 μm in depth, using electromagnetic scattering theory to clarify the interaction between laser polarization and subsurface damages.

✍️ Self-Declaration:

I authenticate that to the best of my knowledge, the information given in this form is correct and complete. If at any time, I am found to have concealed any material information, my application shall be liable to be summarily terminated without notice. I have read the terms and conditions and other policies of the Awards and agree to them.

Dr. Jingfei Yin’s Research for the Best Researcher Award

Strengths for the Award:

  1. Innovative Research Contributions: Dr. Jingfei Yin has made significant contributions to the field of precision machining, particularly in the high-efficiency machining of hard-to-machine materials. His work on high-frequency ultrasonic-assisted drilling, which improves the efficiency of creating submillimeter holes in ceramic matrix composites by tenfold compared to current laser machining methods, is groundbreaking. This demonstrates his ability to push the boundaries of existing technologies.
  2. Expertise in Subsurface Damage Detection: Dr. Yin’s research on the “skin effect” of subsurface damage distribution in high-speed machining and the interaction between laser polarization and subsurface damage highlights his deep understanding of the intricate processes involved in machining. His development of a novel non-destructive method for detecting subsurface damage with high sensitivity is a testament to his innovative approach to solving complex problems in material science.
  3. Leadership in National and Provincial Projects: Dr. Yin has successfully led and participated in more than ten national and provincial research projects, including those funded by the National Natural Science Foundation and the National Science & Technology Major Project. His leadership in these projects underlines his capability to manage large-scale research initiatives and contribute valuable insights to the field.
  4. Scholarly Contributions: With over 20 academic papers published in reputable journals and six patents already published, Dr. Yin’s scholarly output is commendable. His work is recognized and cited by peers, as indicated by his citation index of 12, further affirming his influence in the field of precision machining.
  5. Editorial and Peer-Review Roles: Serving as an editorial member for international journals like the International Journal of Hydromechatronics and Nanotechnology and Precision Engineering, Dr. Yin is well-respected in the academic community. His role in these journals showcases his expertise and his commitment to advancing research in his areas of specialization.

Areas for Improvement:

  1. Collaborations: While Dr. Yin has demonstrated substantial individual achievements, expanding his collaborative efforts, both nationally and internationally, could further enhance his research impact. Engaging in interdisciplinary collaborations or partnerships with industry could open new avenues for research and practical applications of his work.
  2. Publication in High-Impact Journals: Although Dr. Yin has published extensively, further increasing the number of publications in higher-impact journals would bolster his academic profile. Targeting top-tier journals in the fields of material science and precision engineering could help in gaining wider recognition for his work.
  3. Expansion of Research Areas: Dr. Yin’s current research focus is highly specialized, which is a strength, but expanding into related areas such as smart manufacturing, additive manufacturing, or automation in machining could diversify his research portfolio and potentially lead to more groundbreaking discoveries.

 

✍️Publications Top Note :

High-Performance Grinding of Ceramic Matrix Composites

Journal: Nanotechnology and Precision Engineering

Year: 2024

Citations: 0

Machinability of Submillimeter Holes in Ceramic Matrix Composites by High-Frequency Ultrasonic Vibration-Assisted Drilling

Journal: Journal of Materials Processing Technology

Year: 2024

Citations: 1

Experimental Study of Single Grain Grinding for SiCf/SiC Ceramic Matrix Composites

Journal: Zhongguo Jixie Gongcheng/China Mechanical Engineering

Year: 2022

Citations: 4

Rational Discussion on Material Removal Mechanisms and Machining Damage of Hard and Brittle Materials

Journal: Jixie Gongcheng Xuebao/Journal of Mechanical Engineering

Year: 2022

Citations: 5

Feasibility of Polarized Laser Scattering in Detecting the Grinding-Induced Subsurface Damage in SiCf/SiC Ceramic Matrix Composite

Journal: Composite Structures

Year: 2022

Citations: 8

Sensitivity of Polarized Laser Scattering Detection to Subsurface Damage in Ground Silicon Wafers

Journal: Materials Science in Semiconductor Processing

Year: 2022

Citations: 2

Influence of Alumina Abrasive Tool Wear on Ground Surface Characteristics and Corrosion Properties of K444 Nickel-Based Superalloy

Journal: Chinese Journal of Aeronautics

Year: 2022

Citations: 10

Generation Mechanism Modeling of Surface Topography in Tangential Ultrasonic Vibration-Assisted Grinding with Green Silicon Carbide Abrasive Wheel

Journal: Proceedings of the Institution of Mechanical Engineers, Part B: Journal of Engineering Manufacture

Year: 2022

Citations: 10

Edge Chipping Characteristics in Grinding SiCf/SiC Composite

Journal: Ceramics International

Year: 2022

Citations: 15

Depolarization of Surface Scattering in Polarized Laser Scattering Detection for Machined Silicon Wafers

Journal: Precision Engineering

Year: 2022

Citations: 7

Conclusion:

Dr. Jingfei Yin is a highly qualified candidate for the Best Researcher Award. His innovative contributions to the field of high-performance and precision machining, particularly his pioneering work on ultrasonic-assisted drilling and subsurface damage detection, position him as a leader in his field. While there are opportunities for expanding his collaborative efforts and diversifying his research areas, his existing accomplishments make him a strong contender for the award. His research not only advances the scientific understanding of machining processes but also has practical implications for improving efficiency and quality in manufacturing.

Prof Philip F. Yuan | Robotic Fabrication | Best Researcher Award

Prof Philip F. Yuan | Robotic Fabrication | Best Researcher Award

Prof Philip F. Yuan , CAUP, Tongji University, China

Prof Philip F. Yuan is academic and researcher in the field of renewable energy, holds a PhD in Bio systems Engineering from Kangwon National University, South Korea. His academic journey has been marked by a profound dedication to advancing solar energy technologies, specifically in solar thermal harvesting and its integration into agricultural and architectural applications.

 

Professional Profiles:

Scopus

Yuan, Philip F.

Info:

Tongji University, Shanghai, China
56057067100

📖 Publications Top Note :

Agent-Based Principal Strips Modeling for Freeform Surfaces in Architecture
Chai, H., Orozco, L., Kannenberg, F., Menges, A., Yuan, P.F.
Nexus Network Journal, 2024, 26(2), pp. 369–396
Explores innovative modeling techniques in architecture utilizing agent-based methods.

Bioinspired Sensors and Applications in Intelligent Robots: A Review
Zhou, Y., Yan, Z., Yang, Y., Yuan, P.F., He, B.
Robotic Intelligence and Automation, 2024, 44(2), pp. 215–228
A comprehensive review of bioinspired sensor technologies and their applications in robotics.

FloatArch: A Cable-Supported, Unreinforced, and Re-Assemblable 3D-Printed Concrete Structure Designed Using Multi-Material Topology Optimization
Li, Y., Wu, H., Xie, X., Yuan, P.F., Xie, Y.M.
Additive Manufacturing, 2024, 81, 104012
Presents a pioneering design in 3D-printed concrete structures optimized for reusability and sustainability.

Structural Performance-Based 3D Concrete Printing for an Efficient Concrete Beam
Wu, H., Li, Y., Xie, X., Gao, X., Yuan, P.F.
Sustainable Development Goals Series, 2024, Part F2790, pp. 343–354
Discusses advancements in 3D printing for creating efficient concrete beams.

Research on 3D Printing Craft for Flexible Mass Customization: The Case of Chengdu Agricultural Expo Center
Gao, T., Gu, S., Zhang, L., Yuan, P.F.
Sustainable Development Goals Series, 2024, Part F2790, pp. 465–480
Examines flexible customization in 3D printing through a case study of an agricultural expo center.

Preface
Yan, C., Chai, H., Sun, T., Yuan, P.F.
Computational Design and Robotic Fabrication, 2024, Part F2072
Introduction to the latest volume focusing on computational design and robotic fabrication.

The Use of Normative Energy Calculation for Natural Ventilation Performance-Driven Urban Block Morphology Generation
Li, W., Xu, X., Makvandi, M., Sun, Z., Yuan, P.F.
Computational Design and Robotic Fabrication, 2024, Part F2072, pp. 315–328
Investigates energy-efficient urban design through computational methods.

A Parametric Approach Towards Carbon Net Zero in Agricultural Planning
Yueyang, W., Yuan, P.F.
Computational Design and Robotic Fabrication, 2024, Part F2072, pp. 305–314
Focuses on achieving carbon neutrality in agricultural planning using parametric design techniques.

ISOMORPHISM: Stylized Translations of 2D Prototype in Additive Clay Printing
Gong, L., Yuan, P.F.
Computational Design and Robotic Fabrication, 2024, Part F2072, pp. 515–525
Explores the translation of 2D designs into 3D printed clay structures.

Practical Application of Multi-Material Topology Optimization to Performance-Based Architectural Design of an Iconic Building
Li, Y., Ding, J., Zhang, Z., Yuan, P.F., Xie, Y.M.
Composite Structures, 2023, 325, 117603
Applies multi-material optimization in creating high-performance architectural designs.