chunhong gong | composites | Best Researcher Award

Prof. Dr. chunhong gong | composites | Best Researcher Award

Prof.at Henan University, china

Chunhong Gong, Ph.D., is a professor and doctoral supervisor at Henan University, specializing in nanomaterials and electromagnetic protection. She earned her Ph.D. from Henan University in 2008 and has led multiple National Natural Science Foundation projects. With over 50 publications in top-tier journals, her work spans high-performance magnetic–dielectric composites, carbon-based multifunctional nanomaterials, and their applications in energy conversion systems.

Publication Profile

scopus

Education 🎓

Ph.D. in Materials Science, Henan University (2008) | Extensive research in nanomaterials and composites | Strong academic foundation in energy conversion and electromagnetic materials | Contributor to innovative material design and macro preparation methods | Expertise in functional materials with real-world applications

Experience 🏢

Professor & Doctoral Supervisor, Henan University | Principal investigator in four National Natural Science Foundation projects | Published 50+ papers in high-impact journals | Extensive research in nanomaterial applications and multifunctional composites | Key contributor to energy-efficient material innovations

Awards & Honors 🏅

Recipient of multiple research grants from the National Natural Science Foundation | Recognized for contributions to nanomaterials and electromagnetic protection | Published in esteemed journals like Advanced Functional Materials, Nano Letters, and Nano Research | Leading figure in magnetic–dielectric composite advancements

Research Focus 🔬

High-performance & low-cost magnetic–dielectric composites | Carbon-based multifunctional nanomaterials | Structural design & macro preparation of nanomaterials | Energy conversion system applications | Wide-temperature-range electromagnetic protection materials

Publications 📖

Structural design in reduced graphene oxide (RGO) metacomposites for enhanced microwave absorption in wide temperature spectrum  24 Citations

Interface Engineering of Titanium Nitride Nanotube Composites for Excellent Microwave Absorption at Elevated Temperature 32 Citations

Efficient Production of Graphene through a Partially Frozen Suspension Exfoliation Process: An Insight into the Enhanced Interaction Based on Solid-Solid Interfaces 2 Citations

Conclusion

Dr. Chunhong Gong is a highly qualified candidate for the Best Researcher Award, with significant contributions in magnetic–dielectric composites, carbon-based nanomaterials, and electromagnetic protection materials. Her research impact is evident through high-quality publications, leadership in funded projects, and mentorship. To further strengthen her candidacy, expanding industry collaborations, securing additional global recognitions, and contributing to commercialization efforts could enhance her profile as a top contender for the award.

Albandari Alrowaily | Material Science | Best Researcher Award

Assist. Prof. Dr Albandari Alrowaily | Infectious diseases | Best Researcher Award

Assist Prof at  Princess Nourah bint Abdulrahmman University, Saudi Arabia

🎓 Assist. Prof. Dr Albandari Alrowaily is an Assistant Professor of Physics at Princess Nourah Bint Abdurrahman University, Saudi Arabia. She specializes in theoretical nuclear and atomic physics with a Ph.D. from the University of North Texas. Starting her career as a high school physics teacher, she progressed through roles such as lecturer, committee member, and advisor. Passionate about education quality, she now serves as the Teaching and Learning Quality Manager. Assist. Prof. Dr Albandari Alrowaily is an advocate for empowering women in science, holding memberships in ISMWS and APS. Her contributions to academia include teaching a wide range of physics courses, mentoring students, and participating in critical departmental activities. Outside work, she actively supports cultural and environmental initiatives.

Professional Profiles:

Education 🎓

Ph.D. in Theoretical Nuclear and Atomic Physics (2021): University of North Texas, Denton, TX, USA. Master’s in Theoretical Nuclear Physics (2008): Princess Nourah Bint Abdurrahman University, Riyadh, Saudi Arabia. Bachelor’s in Physics (1999): Princess Nourah Bint Abdurrahman University, Riyadh, Saudi Arabia. Additional Certificates: Management, document organization, research ethics, teamwork, professional basics, and ESL.

Experience 👩‍🏫

High School Physics Teacher (1999–2000): Al-Jouf City. Teaching Assistant (2001–2007): Princess Nourah University. Committee Member: Grades Monitoring & Interviews (2001–2007). Lecturer (2008–2021): Princess Nourah University. Assistant Professor (2021–Present): Physics Department. Quality Manager (2022–Present): Teaching & Learning, College of Science. Additional Roles: Academic advisor, training supervisor, committee leader, and lab organizer.

Awards and Honors🏅

Ideal Student Awards (1992 & 1995): Al-Jouf Region. Distinguished Student (2000): Princess Nourah University. Travel Awards (2018–2019): DAMOP, UNT, and COS for research presentations. Recognized for exceptional contributions to academic excellence and community engagement.

Research Focus 🔬

Theoretical studies on nuclear and atomic physics, focusing on quantum mechanics, particle interactions, and advanced simulations. Proficient in computational methods using Matlab, Python, and Mathematica for modeling complex systems.  Research on nuclear reactions, atomic energy levels, and spectroscopic analysis. Advocates for interdisciplinary applications of physics to solve global challenges.

✍️Publications Top Note :

High-Performance Supercapacitors (ZnSe/MnSe)

Study: Development of ZnSe/MnSe composites for supercapacitor electrodes using hydrothermal techniques.

Publication: Journal of Physics and Chemistry of Solids, 2024, 49 citations.

Impact: Enhanced capacitive performance through novel material synthesis.

2. g-C3N4/NiIn2S4 for Supercapacitors

Study: Hydrothermal fabrication of g-C3N4/NiIn2S4 composite materials.

Publication: Ceramics International, 2024, 35 citations.

Impact: Promising electrode material with high efficiency.

3. Nonlinear Plasma Waves

Study: Interaction of solitons in pair-ion–electron plasmas using the Hirota method.

Publication: Physics of Fluids, 2023, 30 citations.

Impact: Advances theoretical understanding of electrostatic plasma dynamics.

4. SrCeO3/rGO for Oxygen Evolution Reaction

Study: Hydrothermal synthesis of SrCeO3 nanocomposites for electrocatalysis.

Publication: Fuel, 2024, 27 citations.

Impact: Enhanced catalytic efficiency for clean energy applications.

5. BiFeO3 Supercapacitor Applications

Study: Mn-doped BiFeO3 as an electrode material for supercapacitors.

Publication: Journal of Energy Storage, 2024, 20 citations.

Impact: Novel application of perovskite materials for energy storage.

6. Radiation Shielding Polymers

Study: Optical and mechanical improvements in polyvinyl alcohol composites.

Publication: Journal of Rare Earths, 2023, 18 citations.

Impact: Optimized materials for gamma-ray attenuation.

7. NiS2@SnS2 Nanohybrids

Study: Water-splitting applications of NiS2@SnS2 nanohybrids.

Publication: Materials Chemistry and Physics, 2024, 15 citations.

Impact: Low-cost, efficient electrocatalysts for sustainable energy.

8. Ce-doped SnFe2O4 Supercapacitors

Study: Hydrothermal synthesis enhancing electrochemical performance.

Publication: Electrochimica Acta, 2024, 13 citations.

Impact: Improved energy storage capabilities of supercapacitors.

Conclusion

The candidate has a robust academic background, extensive teaching experience, and proven leadership capabilities, making them a strong contender for the Research for Best Researcher Award. Strengthening the portfolio with focused research publications and demonstrating broader impacts of their work will further enhance their prospects for this prestigious recognition.

Aziza Kuldasheva | material science | Women Researcher Award

Ms. Aziza Kuldasheva | material science | Women Researcher Award

PhD at Wuhan University of technology, China

Aziza Kuldasheva is a dedicated civil engineering researcher and educator with extensive international experience. Holding a PhD position at Wuhan University of Technology in China, she has been deeply involved in advancing building materials and structural engineering. With fluency in multiple languages, including English and Russian, she effectively collaborates across diverse cultural and academic backgrounds. Aziza’s commitment to education is demonstrated through her roles as a lecturer and senior research worker at various prestigious institutions. Her passion for sustainable construction practices and innovative engineering solutions positions her as a key contributor to the field.

Publication Profile

orcid

Education 📚🎓

Aziza Kuldasheva earned her Bachelor’s degree with a GPA of 3.5 and a Master’s degree with a GPA of 3.9 from Samarkand State Architectural and Civil Engineering University in Uzbekistan. She further enhanced her expertise through a scientific internship at Harbin Engineering University in China and completed another Master’s degree at Riga Technical University in Latvia, achieving a GPA of 3.9. Currently, she is pursuing her PhD at Wuhan University of Technology, where she maintains a GPA of 3.54. Her academic journey reflects her strong foundation in civil engineering, supplemented by diverse international experiences that enrich her research and teaching methodologies.

Experience 🏗️🔧🌏

Aziza has a wealth of experience in civil engineering, beginning her career at Samarkand State Architectural and Civil Engineering University, where she served as an Assistant Lecturer, Lecturer, and Senior Research Worker in the Science-Research Laboratory of Building Materials. Between 2010 and 2018, she made significant contributions to various research projects, demonstrating leadership in her field. Aziza also worked as a Senior Research Worker at a similar laboratory in Riga, Latvia, gaining valuable insights into European engineering practices. Notably, she was an expert for the Ministry of Innovative Development of the Republic of Uzbekistan and participated in high-impact projects such as the nonlinear statistical model updating of prestressed concrete beams and bridge health monitoring assessments in Hubei, China. Her multifaceted roles reflect her commitment to advancing knowledge and technology in civil engineering.

Awards and Honors 🏆🎖️🌟

Aziza Kuldasheva has received numerous certificates and accolades throughout her academic and professional journey. She was honored with a certificate for her contributions to the BAU 2023 Exhibition of Building Materials in Germany, recognizing her commitment to innovation in the field. Additionally, she holds various training certificates, including those in quality laboratory testing, concrete technology, and inclusive growth for developing countries, showcasing her dedication to continuous professional development. Her expertise in building materials and color technologies has been validated through certifications from prestigious organizations, enhancing her credibility as a researcher and educator. These achievements underscore her impact on civil engineering and her commitment to improving construction practices, making her a respected figure in her field.

Research Focus 🔬🏗️

Aziza Kuldasheva’s research focuses on enhancing the safety and reliability of civil engineering structures, particularly through advanced modeling and analysis of building materials. Her recent projects include nonlinear statistical model updating and safety evaluations of long-span prestressed concrete beams, emphasizing her innovative approaches to structural engineering challenges. Aziza is particularly interested in the intersection of technology and sustainability in construction practices, aiming to develop effective solutions that address both functional and environmental concerns. Her participation in bridge health monitoring projects illustrates her commitment to real-world applications of her research. As a member of the Building Technology Center at Wuhan University of Technology, she collaborates with industry leaders to bridge the gap between academic research and practical engineering solutions. Aziza’s work not only contributes to academic knowledge but also seeks to enhance the resilience and sustainability of civil engineering practices globally.

Publication  Top Notes

Title: Single-cell transcriptional uncertainty landscape of cell differentiation

Authors: Nan Papili Gao, Olivier Gandrillon, András Páldi, Ulysse Herbach, Rudiyanto Gunawan, et al.

Publication Date: July 20, 2023

Journal: F1000Research

DOI: 10.12688/f1000research.131861.2

ISSN: 2046-1402

Conclusion

Aziza Kuldasheva is a strong candidate for the Women Researcher Award due to her academic achievements, diverse experience, and significant contributions to civil engineering research. By addressing areas for improvement, such as enhancing her publication record and increasing her engagement with the research community, she can further strengthen her position as a leading researcher in her field. Supporting her nomination for this award would not only recognize her efforts but also encourage her continued growth and contributions to engineering and technology, particularly in the context of women’s representation in research.

JIBIN K P | Polymer nanocomposites | Best Scholar Award

Dr.  Mahatma Gandhi University, India

Dr. Jibin Keloth Paduvilan is a highly accomplished researcher in the field of polymer nanocomposites and nanomaterials, with significant contributions to the study of rubber nanocomposites, graphene oxide, and environmentally friendly materials. He holds a Ph.D. in Chemistry from Mahatma Gandhi University, Kottayam, Kerala, where he also serves as a Senior Researcher. With over seven years of R&D experience, including a patent for green tire applications and multiple publications in esteemed journals, Dr. Jibin’s work is at the forefront of advanced material science. Additionally, he is an Editorial Assistant for NANOSO Journal, Elsevier.

Professional Profiles:

Education 🎓 

Doctor of Philosophy (Chemistry)
🎓 2019-2024🏫 School of Chemical Sciences, Mahatma Gandhi University, Kottayam, KeralaDr. Jibin pursued his Ph.D. in Chemistry, focusing on cutting-edge research in nanostructured materials and their applications. Master of Science in Chemistry 🎓 2013-2015🏫 Mahatma Gandhi University, Kottayam, Kerala With a first rank and an impressive 87% score, Dr. Jibin completed his M.Sc. in Chemistry, where he developed a deep understanding of physical and chemical properties of materials. Bachelor of Science in Chemistry 🎓 2010-2013 🏫 Kannur University, Kerala Dr. Jibin completed his B.Sc. with a solid foundation in chemistry, achieving an 82% score.Higher Secondary Examination 🎓 2008-2010 🏫 Kerala Higher Secondary Education Board Secondary School Leaving Certificate 🎓 2008 🏫 General Education Department

Work Experience

Senior Researcher
📅 January 2019 – Present
🏫 School of Chemical Sciences, Mahatma Gandhi University, Kottayam, Kerala, India
Dr. Jibin Keloth Paduvilan has been serving as a Senior Researcher, contributing significantly to the field of polymer nanocomposites and nanomaterials. His research focuses on developing innovative materials for advanced applications, with a strong emphasis on sustainable and environmentally friendly solutions.Editorial Assistant to NANOSO Journal, Elsevier
📅 January 2019 – Present
📚 NANOSO Journal, Elsevier
Dr. Jibin has been an Editorial Assistant for NANOSO Journal, where he collaborates with leading researchers and ensures the publication of high-quality research in the field of nanoscience and nanotechnology.Junior Research Fellow
📅 October 2017 – October 2019
🏫 International and Inter University Centre for Nanoscience and Nanotechnology, Mahatma Gandhi University, Kottayam, Kerala, India
During his tenure as a Junior Research Fellow, Dr. Jibin honed his skills in the synthesis and characterization of nanomaterials, laying the foundation for his future research endeavors.

Research for Best Scholar Award: Evaluation of Dr. JIBIN K P

Strengths for the Award:

  1. Extensive Research Experience:
    • With over seven years in R&D, Dr. JIBIN K P has demonstrated significant expertise in polymer nanocomposites, hybrid nanostructures, and nanomaterial applications. This extensive experience highlights their deep understanding of material science and innovative research capabilities.
  2. Diverse Research Interests:
    • Their research spans a range of topics including graphene oxide, 2D materials, biopolymers, and environment-friendly materials. This breadth of interest indicates a holistic approach to material science and a commitment to advancing sustainable and cutting-edge technologies.
  3. Notable Publications and Patent:
    • [Your Name] has published impactful research in high-quality journals such as Nanomaterials and has been granted a patent (No. 512432) for core shell structure reinforced natural rubber composites. This demonstrates their ability to translate research into practical and innovative solutions.
  4. Editorial Experience:
    • Serving as an Editorial Assistant to NANOSO Journal, [Your Name] has contributed to the academic community, further reflecting their expertise and engagement in the field of nanoscience and nanotechnology.
  5. Academic Excellence:
    • Their strong educational background, including a Ph.D. in Chemistry with a first-rank Master’s degree, underscores a solid foundation in the subject matter and a commitment to academic excellence.

Areas for Improvement:

  1. Broader Collaboration:
    • Expanding collaborative research efforts with international institutions could provide new perspectives and enhance the impact of their work on a global scale.
  2. Increased Focus on Emerging Trends:
    • Staying updated with emerging trends in material science and nanotechnology, such as advancements in AI applications or new nanomaterial synthesis techniques, could further enhance their research scope and relevance.
  3. Enhancing Public Engagement:
    • Increasing public and industry engagement through seminars, workshops, or popular science articles could elevate the visibility and societal impact of their research findings.

 

✍️Publications Top Note :

 

Advances and Future Outlook in Epoxy/Graphene Composites for Anticorrosive Applications

Authors: JS George, JK Paduvilan, N Salim, J Sunarso, N Kalarikkal, N Hameed

Journal: Progress in Organic Coatings

Volume: 162

Article Number: 106571

Year: 2022

Citations: 67

This article reviews the development of epoxy/graphene composites, emphasizing their potential in anticorrosive applications. The review covers various synthesis methods, the role of graphene in enhancing the anticorrosive properties, and the challenges in producing high-performance composites. The future outlook suggests that further research into functionalized graphene and large-scale production techniques could lead to more effective and commercially viable anticorrosive coatings.

Surface Modification of Wool Fabric Using Sodium Lignosulfonate and Subsequent Improvement in the Interfacial Adhesion of Natural Rubber Latex in the Wool/Rubber Composites

Authors: S Jose, S Thomas, KP Jibin, KS Sisanth, V Kadam, DB Shakyawar

Journal: Industrial Crops and Products

Volume: 177

Article Number: 114489

Year: 2022

Citations: 27

This study focuses on the surface modification of wool fabric using sodium lignosulfonate to improve its compatibility with natural rubber latex. The research highlights the enhanced interfacial adhesion in wool/rubber composites, which could be beneficial for the development of advanced textile materials.

Assessment of Graphene Oxide and Nanoclay Based Hybrid Filler in Chlorobutyl-Natural Rubber Blend for Advanced Gas Barrier Applications

Authors: J Keloth Paduvilan, P Velayudhan, A Amanulla, H Joseph Maria

Journal: Nanomaterials

Volume: 11, Issue 5

Article Number: 1098

Year: 2021

Citations: 25

This article examines the use of graphene oxide and nanoclay as hybrid fillers in chlorobutyl-natural rubber blends, focusing on their potential as gas barrier materials. The study demonstrates that the incorporation of these fillers significantly enhances the gas barrier properties, making the composites suitable for advanced applications in various industries.

Silica-Graphene Oxide Reinforced Rubber Composites

Authors: KP Jibin, V Prajitha, S Thomas

Journal: Materials Today: Proceedings

Volume: 34

Pages: 502-505

Year: 2021

Citations: 18

Conclusion:

Dr. JIBIN K P is a distinguished scholar with a robust track record in the field of polymer nanocomposites and nanotechnology. Their extensive research experience, notable publications, and innovative contributions such as the granted patent showcase their excellence and leadership in material science. Addressing areas for improvement, such as broadening collaborations and staying abreast of emerging trends, could further amplify their impact and recognition in the field. Their dedication and achievements make them a strong candidate for the Best Scholar Award, reflecting both their current excellence and future potential in advancing material science and nanotechnology.

Juan Bai | Materials and Structures | Women Researcher Award

Dr.  Queensland university of technology, Australia

Dr. Bai J. is an ARC DECRA Fellow and Lecturer at Queensland University of Technology, with a strong background in material physics and chemistry. Their research is centered on designing and synthesizing functional nanostructured materials for electrochemistry and energy conversion, particularly in fuel cells and electrocatalysis. Dr. Bai has published 24 papers in leading SCI journals such as Advanced Materials and ACS Energy Letters. Recognized for their contributions, they have received prestigious awards, including the Australian Research Council DECRA and Discovery Projects awards. Dr. Bai holds a Ph.D. from Shaanxi Normal University and has extensive expertise in electrochemical energy storage and conversion devices.

Professional Profiles:

 

🎓 Education

Feb. 2024 – Present:
ARC DECRA Fellow/Lecturer, School of Chemistry and Physics, Queensland University of Technology, Brisbane, Australia.Apr. 2020 – Jan. 2024:
Postdoc in Electrocatalysis, School of Chemistry and Physics, Queensland University of Technology, Brisbane, Australia.
Supervisors: Prof. Ziqi Sun, Jun MeiSep. 2016 – Jun. 2019:
Ph.D. in Material Physics and Chemistry, School of Materials Science and Engineering, Shaanxi Normal University, Xi’an, China.
Supervisors: Prof. Yu Chen, Jinghui ZengSep. 2012 – Jun. 2015:
M.S. in Physical Chemistry, College of Chemistry and Materials Science, Nanjing Normal University, Nanjing, China.
Supervisors: Prof. Dongmei Sun, Yu Chen, Tianhong LuSep. 2008 – Jun. 2012:
B.S. in Science Education, Department of Applied Chemistry, Yuncheng University, Yuncheng, China.

🔬 Research Objectives

My research is centered on the design and synthesis of functional nanostructured materials for applications in electrochemistry and energy conversion devices. Key areas of focus include:Anodic and Cathodic Reactions of Fuel Cells: ORR, MOR, EOR, and FAORElectrocatalysts: Noble metal-based (Pt, Pd, Rh) nanoparticles for HER, OER, and NRRAs the first/co-first/corresponding author, I have published 24 papers in top-tier SCI Journals such as Advanced Materials, ACS Energy Letters, and Advanced Energy Materials.

🏆 Awards and Honors

2023: Australian Research Council Discovery Early Career Researcher Award (DECRA) – $448,407.002023: Australian Research Council Discovery Projects – $404,530.002018: National Scholarship for Graduate Students (Ph.D.)2017: Research Individual Award by Shaanxi Normal University2017: Ji-Xue Scholarship by Shaanxi Normal University2016: Yuan-Ding Scholarship by Shaanxi Normal University2015: Excellent Student Award by Nanjing Normal University

Strengths for the Award

  1. Extensive Research Experience: The candidate has a strong background in material physics and chemistry, with a focus on nanostructured materials and their applications in electrochemical energy conversion. This expertise is highly relevant to the award, as it demonstrates a deep understanding of a critical field in modern science.
  2. Publication Record: With 24 papers published in high-impact SCI journals such as Advanced Materials, ACS Energy Letters, and Advanced Energy Materials, the candidate has established herself as a leading researcher in her field. This prolific publication record underscores her ability to contribute original and significant research to the scientific community.
  3. Award and Recognition: The candidate has received prestigious awards, including the 2023 Australian Research Council Discovery Early Career Researcher Award (DECRA) and substantial research funding. These accolades reflect her recognized potential and achievements within the scientific community.
  4. Research Focus on Sustainability: The candidate’s work on electrocatalysts and fuel cells, especially in the context of sustainable energy, aligns with global priorities in renewable energy and environmental protection. This makes her research not only innovative but also socially and environmentally impactful.
  5. Professional Skills: The candidate has demonstrated a high level of expertise in experimental techniques, theoretical knowledge, and the use of advanced instrumentation. These skills are essential for conducting cutting-edge research in electrochemistry and material science.

Areas for Improvement

  1. Broader Impact and Outreach: While the candidate has an impressive academic and research background, there is limited information on her involvement in outreach activities, mentoring, or promoting women in science. Increasing visibility and engagement in these areas could enhance her candidacy for a Women Researcher Award, which often considers contributions beyond academic achievements.
  2. Interdisciplinary Collaboration: While the candidate’s research is highly specialized, further collaboration across disciplines could lead to broader applications of her work and increase its overall impact. Engaging in interdisciplinary projects or collaborations with industry could further elevate her profile.

 

✍️Publications Top Note :

Nanocatalysts for Electrocatalytic Oxidation of Ethanol
Authors: J. Bai, D. Liu, J. Yang, Y. Chen
Journal: ChemSusChem, 12(10), 2117-2132, 2019
Citations: 170
🧪 Focus: Ethanol oxidation using nanocatalysts.

Polyallylamine-Functionalized Platinum Tripods: Enhancement of Hydrogen Evolution Reaction by Proton Carriers
Authors: G.R. Xu, J. Bai, L. Yao, Q. Xue, J.X. Jiang, J.H. Zeng, Y. Chen, J.M. Lee
Journal: ACS Catalysis, 7(1), 452-458, 2017
Citations: 147
🔋 Focus: Hydrogen evolution reaction.

Bimetallic Platinum–Rhodium Alloy Nanodendrites as Highly Active Electrocatalyst for the Ethanol Oxidation Reaction
Authors: J. Bai, X. Xiao, Y.Y. Xue, J.X. Jiang, J.H. Zeng, X.F. Li, Y. Chen
Journal: ACS Applied Materials & Interfaces, 10(23), 19755-19763, 2018
Citations: 145
⚗️ Focus: Platinum-rhodium alloy for ethanol oxidation.

Atomically Ultrathin RhCo Alloy Nanosheet Aggregates for Efficient Water Electrolysis in Broad pH Range
Authors: Y. Zhao, J. Bai, X.R. Wu, P. Chen, P.J. Jin, H.C. Yao, Y. Chen
Journal: Journal of Materials Chemistry A, 7(27), 16437-16446, 2019
Citations: 143
🌊 Focus: Water electrolysis using RhCo alloy nanosheets.

Au Nanowires@Pd-Polyethylenimine Nanohybrids as Highly Active and Methanol-Tolerant Electrocatalysts Toward Oxygen Reduction Reaction in Alkaline Media
Authors: Q. Xue, J. Bai, C. Han, P. Chen, J.X. Jiang, Y. Chen
Journal: ACS Catalysis, 8(12), 11287-11295, 2018
Citations: 133
🧪 Focus: Oxygen reduction reaction in alkaline media.

Polyethyleneimine Functionalized Platinum Superstructures: Enhancing Hydrogen Evolution Performance by Morphological and Interfacial Control
Authors: G.R. Xu, J. Bai, J.X. Jiang, J.M. Lee, Y. Chen
Journal: Chemical Science, 8(12), 8411-8418, 2017
Citations: 115
⚛️ Focus: Hydrogen evolution through platinum superstructures.

Hydrothermal Synthesis and Catalytic Application of Ultrathin Rhodium Nanosheet Nanoassemblies
Authors: J. Bai, G.R. Xu, S.H. Xing, J.H. Zeng, J.X. Jiang, Y. Chen
Journal: ACS Applied Materials & Interfaces, 8(49), 33635-33641, 2016
Citations: 96
🔬 Focus: Rhodium nanosheet for catalytic applications.

Molybdenum‐Promoted Surface Reconstruction in Polymorphic Cobalt for Initiating Rapid Oxygen Evolution
Authors: J. Bai, J. Mei, T. Liao, Q. Sun, Z.G. Chen, Z. Sun
Journal: Advanced Energy Materials, 12(5), 2103247, 2022
Citations: 87
Focus: Oxygen evolution in cobalt.

One-Pot Fabrication of Hollow and Porous Pd–Cu Alloy Nanospheres and Their Remarkably Improved Catalytic Performance for Hexavalent Chromium Reduction
Authors: S.H. Han, J. Bai, H.M. Liu, J.H. Zeng, J.X. Jiang, Y. Chen, J.M. Lee
Journal: ACS Applied Materials & Interfaces, 8(45), 30948-30955, 2016
Citations: 85
🌍 Focus: Catalytic reduction of hexavalent chromium.

Glycerol Oxidation Assisted Electrocatalytic Nitrogen Reduction: Ammonia and Glyceraldehyde Co-Production on Bimetallic RhCu Ultrathin Nanoflake Nanoaggregates
Authors: J. Bai, H. Huang, F.M. Li, Y. Zhao, P. Chen, P.J. Jin, S.N. Li, H.C. Yao, J.H. Zeng
Journal: Journal of Materials Chemistry A, 7(37), 21149-21156, 2019
Citations: 84

Conclusion

The candidate is exceptionally well-suited for the Women Researcher Award, given her extensive research experience, strong publication record, and recognized achievements in the field of electrochemistry and materials science. Her work is not only innovative but also highly relevant to global challenges, particularly in sustainable energy. To further strengthen her candidacy, the candidate might consider expanding her impact through outreach, mentoring, and interdisciplinary collaboration.

Girish Joshi | Polynmer Composites | Best Scholar Award

Prof. Girish Joshi | Polynmer Composites | Best Scholar Award

Prof. Institute of Chemical Technology Mumbai Marathwada campus Jalna , Gabon

Prof. Girish Mukundrao Joshi, a Full Professor of Engineering Physics and Materials at ICT Mumbai’s off-campus in Marathwada Jalna, boasts over 20 years of teaching experience. He has been a visiting scientist at UCLM, Spain, and has published 150 articles in prestigious international journals, holding two granted patents. An APA life member, fellow of the Maharashtra Academy of Sciences, and life fellow of the Indian Chemical Society, he received the National Best Teacher Award by Krishmurthy Trust in 2017. He has mentored seven doctorates, executed major research projects, and serves on various editorial and expert boards. Recently, he was appointed to CIPET’s Innovation Cell and DBATU’s Academic Council.

 

Professional Profiles:

Academic and Professional Background 🎓

Prof. Girish Mukundrao Joshi is currently a Full Professor in Engineering Physics and Materials at ICT Mumbai’s off-campus Marathwada Jalna, Maharashtra. With over 20 years of teaching experience, he has significantly contributed to the academic field. He has served as a visiting scientist at UCLM, Spain, in 2009 and 2016.

Publications and Patents 📚

Prof. Joshi has published 150 articles in reputed international journals and holds credit for two granted patents. His scholarly work is widely recognized, showcasing his expertise and dedication to research.

Memberships and Fellowships 🏅

APA Life Member (2024)Fellow of the Maharashtra Academy of Sciences (2019)Life Fellow of the Indian Chemical Society (2021)

Awards and Recognition 🏆

He was honored with the National Best Teacher Award by Krishmurthy Trust, Tirupati, in 2017. Recently, he received the Best Professor Award from Modern Plastic India in 2024.

Teaching and Mentorship 👩‍🏫

Prof. Joshi is celebrated for his teaching tenure at VIT Vellore (2010-2018). He has guided seven doctorates and is currently mentoring four more. His dedication to student development is commendable.

Research Projects 🔬

He has led four significant research projects as the chief investigator for organizations such as the Naval Research Board (NRB), DRDO, Dover India Industry, and Savitra Printer Nashik, under CSR-UGC-DAE.

Editorial and Advisory Roles 📖

Prof. Joshi serves on the editorial board of Modern Plastic India Magazine and is an expert board member for the Journal of Physicascripta – IOP. He is also a Board of Studies (BOS) member for SRTMU, Nanded, and ICT Mumbai.

✍️Publications Top Note :

Enhanced Physio‐Chemical Properties of PMMA/PS Polymer Blends by DC Glow Discharge Plasma Treated K2TI6O13 for Electronic Applications

Journal: ChemistrySelect

Date: 2024-07-18

DOI: 10.1002/slct.202401048

Contributors: Shankar S. Humbe, Girish M. Joshi, R. R. Deshmukh

2. Hydrophobic Polymer Nano Hybrid Ternary Composite Electrode for Nanomolar Tracing of Cd2+ Ions

Journal: Journal of Applied Polymer Science

Date: 2024-04-20

DOI: 10.1002/app.55249

Contributors: Savita S. Mane, Girish M. Joshi

3. Influence of Hybrid Filler on Charge Conduction and Storage Performance of Polyvinyl Chloride/Nitrocellulose Blend for Hybrid Electrolyte Application

Journal: ChemistrySelect

Date: 2024-03-18

DOI: 10.1002/slct.202304421

Contributors: Pratibha S. Jadhav, Girish M. Joshi

4. Nanostructural Characterization of Luminescent Polyvinyl Alcohol / Graphene Quantum Dots Nanocomposite Films

Date: 2023-11

DOI: 10.20944/preprints202311.0500.v1

Contributors: Elumalai D, Rodríguez B, Kovtun G, Hidalgo P, Méndez B, Kalleemula S, Joshi GM, Cuberes MT

5. Recent Scenario of Surfactants Modified Graphene and Its Derivatives‐Based Polymer Nanocomposites—Review

Journal: Macromolecular Chemistry and Physics

Date: 2023-11

DOI: 10.1002/macp.202300122

Contributors: Shreya P. Yeole, Pratibha S. Jadhav, Girish M. Joshi