Yurong Wang | Additive manufacturing | Best Researcher Award

Mr. Yurong Wang | Additive manufacturing | Best Researcher Award

Mr at  Tsinghua University, China

A PhD candidate in Mechanical Engineering at Sichuan University, this researcher specializes in additive manufacturing, powder bed fusion, and advanced material processes. With a passion for material characterization and innovation, they strive to advance mechanical engineering technologies.

Professional Profiles:

orcid

🎓 Education

PhD Student (Mechanical Engineering) – Sichuan UniversityMaster’s (Mechanical Engineering) – Tsinghua University & Guangxi UniversityBachelor’s (Mechanical and Vehicle Engineering) – Hunan University

💼 Experience

Research assistant in additive manufacturing projects at Sichuan UniversityIntern at advanced materials lab, Tsinghua UniversityUndergraduate researcher in mechanical design at Hunan University

🏆 Awards and Honors

Best Graduate Research Award – Sichuan UniversityOutstanding Master’s Thesis Award – Tsinghua UniversityInnovation Excellence Award – Guangxi University

🔍 Research Focus

Additive Manufacturing 🛠️Powder Bed Fusion ⚙️Advanced Material Processes 🔩Material Characterization 🧪

✍️Publications Top Note 

Strengthened Microstructure and Mechanical Properties of Austenitic 316L Stainless Steels by Grain Refinement and Solute Segregation

Journal of Materials Research and Technology (2025)
DOI: 10.1016/j.jmrt.2024.12.086
Authors: Yurong Wang, Buwei Xiao, Xiaoyu Liang, Huabei Peng, Jun Zhou, Feng Lin

This study explores how refining grain structure and promoting solute segregation enhances the mechanical properties of 316L stainless steel. The findings reveal improved strength and toughness, making it a promising material for advanced engineering applications.

2. Effect of Laser Energy on Anisotropic Material Properties of a Novel Austenitic Stainless Steel with a Fine-Grained Microstructure
Journal of Manufacturing and Materials Processing

This paper investigates the influence of laser energy on the anisotropic properties of fine-grained austenitic stainless steel. The research highlights how laser processing parameters can optimize material performance, contributing to advancements in additive manufacturing.

Conclusion

This individual is highly suitable for the Best Researcher Award, as they have a strong educational background, expertise in cutting-edge research areas, and the potential for impactful contributions to additive manufacturing and advanced materials science. They demonstrate the qualities of a forward-thinking, innovative researcher poised to make significant strides in their field. With continued focus on publishing high-quality research and fostering industry partnerships, their potential to achieve even greater success and recognition is substantial.